4,987 research outputs found

    Fly-By-Wireless for Next Generation Aircraft: Challenges and Potential solutions

    Get PDF
    ”Fly-By-Wireless” paradigm based on wireless connectivity in aircraft has the potential to improve efficiency and flexibility, while reducing weight, fuel consumption and maintenance costs. In this paper, first, the opportunities and challenges for wireless technologies in safety-critical avionics context are discussed. Then, the assessment of such technologies versus avionics requirements is provided in order to select the most appropriate one for a wireless aircraft application. As a result, the design of a Wireless Avionics Network based on Ultra WideBand technology is investigated, considering the issues of determinism, reliability and security

    Performance analysis with wireless power transfer constraint policies in full-duplex relaying networks

    Get PDF
    In practice, full-duplex (FD) transmission mode not only helps extend the coverage but also lengthen network lifetime. In this paper, we develop wireless power supply policies, namely separated power (SP) and harvested power (HP) to propose a flexible architecture at the relay node in FD decode-and-forward (DF) relaying networks considering time switching-based relaying protocol (TSR) to achieve optimal time used for a communication process. This transmission mode requires more processing procedure at the relay, i.e. antenna installations and radio frequency (RF) self-interference cancellation. We evaluate the optimal power constraints in case of SP and HP to achieve better power consumption efficiency at the relay node. More importantly, closed-form expressions for outage probability and throughput are provided, and we also use numerical and simulation results to compare SP with HP.Web of Science234767

    Providing End-to-End Delay Guarantees for Multi-hop Wireless Sensor Networks over Unreliable Channels

    Full text link
    Wireless sensor networks have been increasingly used for real-time surveillance over large areas. In such applications, it is important to support end-to-end delay constraints for packet deliveries even when the corresponding flows require multi-hop transmissions. In addition to delay constraints, each flow of real-time surveillance may require some guarantees on throughput of packets that meet the delay constraints. Further, as wireless sensor networks are usually deployed in challenging environments, it is important to specifically consider the effects of unreliable wireless transmissions. In this paper, we study the problem of providing end-to-end delay guarantees for multi-hop wireless networks. We propose a model that jointly considers the end-to-end delay constraints and throughput requirements of flows, the need for multi-hop transmissions, and the unreliable nature of wireless transmissions. We develop a framework for designing feasibility-optimal policies. We then demonstrate the utility of this framework by considering two types of systems: one where sensors are equipped with full-duplex radios, and the other where sensors are equipped with half-duplex radios. When sensors are equipped with full-duplex radios, we propose an online distributed scheduling policy and proves the policy is feasibility-optimal. We also provide a heuristic for systems where sensors are equipped with half-duplex radios. We show that this heuristic is still feasibility-optimal for some topologies

    H-MAC: A Hybrid MAC Protocol for Wireless Sensor Networks

    Full text link
    In this paper, we propose a hybrid medium access control protocol (H-MAC) for wireless sensor networks. It is based on the IEEE 802.11's power saving mechanism (PSM) and slotted aloha, and utilizes multiple slots dynamically to improve performance. Existing MAC protocols for sensor networks reduce energy consumptions by introducing variation in an active/sleep mechanism. But they may not provide energy efficiency in varying traffic conditions as well as they did not address Quality of Service (QoS) issues. H-MAC, the propose MAC protocol maintains energy efficiency as well as QoS issues like latency, throughput, and channel utilization. Our numerical results show that H-MAC has significant improvements in QoS parameters than the existing MAC protocols for sensor networks while consuming comparable amount of energy.Comment: 10 pages, IJCNC Journal 201
    corecore