1,607 research outputs found

    Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction

    Get PDF
    In this paper we establish necessary conditions for optimal control using the ideas of Lagrangian reduction in the sense of reduction under a symmetry group. The techniques developed here are designed for Lagrangian mechanical control systems with symmetry. The benefit of such an approach is that it makes use of the special structure of the system, especially its symmetry structure and thus it leads rather directly to the desired conclusions for such systems. Lagrangian reduction can do in one step what one can alternatively do by applying the Pontryagin Maximum Principle followed by an application of Poisson reduction. The idea of using Lagrangian reduction in the sense of symmetry reduction was also obtained by Bloch and Crouch [1995a,b] in a somewhat different context and the general idea is closely related to those in Montgomery [1990] and Vershik and Gershkovich [1994]. Here we develop this idea further and apply it to some known examples, such as optimal control on Lie groups and principal bundles (such as the ball and plate problem) and reorientation examples with zero angular momentum (such as the satellite with moveable masses). However, one of our main goals is to extend the method to the case of nonholonomic systems with a nontrivial momentum equation in the context of the work of Bloch, Krishnaprasad, Marsden and Murray [1995]. The snakeboard is used to illustrate the method

    Poisson reduction for nonholonomic mechanical systems with symmetry

    Get PDF
    This paper continues the work of Koon and Marsden [1997b] that began the comparison of the Hamiltonian and Lagrangian formulations of nonholonomic systems. Because of the necessary replacement of conservation laws with the momentum equation, it is natural to let the value of momentum be a variable and for this reason it is natural to take a Poisson viewpoint. Some of this theory has been started in van der Schaft and Maschke [1994]. We build on their work, further develop the theory of nonholonomic Poisson reduction, and tie this theory to other work in the area. We use this reduction procedure to organize nonholonomic dynamics into a reconstruction equation, a nonholonomic momentum equation and the reduced Lagrange d’Alembert equations in Hamiltonian form. We also show that these equations are equivalent to those given by the Lagrangian reduction methods of Bloch, Krishnaprasad, Marsden and Murray [1996]. Because of the results of Koon and Marsden [1997b], this is also equivalent to the results of Bates and Sniatycki [1993], obtained by nonholonomic symplectic reduction. Two interesting complications make this effort especially interesting. First of all, as we have mentioned, symmetry need not lead to conservation laws but rather to a momentum equation. Second, the natural Poisson bracket fails to satisfy the Jacobi identity. In fact, the so-called Jacobiizer (the cyclic sum that vanishes when the Jacobi identity holds), or equivalently, the Schouten bracket, is an interesting expression involving the curvature of the underlying distribution describing the nonholonomic constraints. The Poisson reduction results in this paper are important for the future development of the stability theory for nonholonomic mechanical systems with symmetry, as begun by Zenkov, Bloch and Marsden [1997]. In particular, they should be useful for the development of the powerful block diagonalization properties of the energy-momentum method developed by Simo, Lewis and Marsden [1991]

    The Hamiltonian and Lagrangian Approaches to the Dynamics of Nonholonomic Systems

    Get PDF
    This paper compares the Hamiltonian approach to systems with nonholonomic constraints (see Weber [1982], Arnold [1988], and Bates and Sniatycki [1993], van der Schaft and Maschke [1994] and references therein) with the Lagrangian approach (see Koiller [1992], Ostrowski [1996] and Bloch, Krishnaprasad, Marsden and Murray [1996]). There are many differences in the approaches and each has its own advantages; some structures have been discovered on one side and their analogues on the other side are interesting to clarify. For example, the momentum equation and the reconstruction equation were first found on the Lagrangian side and are useful for the control theory of these systems, while the failure of the reduced two form to be closed (i.e., the failure of the Poisson bracket to satisfy the Jacobi identity) was first noticed on the Hamiltonian side. Clarifying the relation between these approaches is important for the future development of the control theory and stability and bifurcation theory for such systems. In addition to this work, we treat, in this unified framework, a simplified model of the bicycle (see Getz [1994] and Getz and Marsden [1995]), which is an important underactuated (nonminimum phase) control system

    Simulating Nonholonomic Dynamics

    Full text link
    This paper develops different discretization schemes for nonholonomic mechanical systems through a discrete geometric approach. The proposed methods are designed to account for the special geometric structure of the nonholonomic motion. Two different families of nonholonomic integrators are developed and examined numerically: the geometric nonholonomic integrator (GNI) and the reduced d'Alembert-Pontryagin integrator (RDP). As a result, the paper provides a general tool for engineering applications, i.e. for automatic derivation of numerically accurate and stable dynamics integration schemes applicable to a variety of robotic vehicle models

    Flat Nonholonomic Matching

    Get PDF
    In this paper we extend the matching technique to a class of nonholonomic systems with symmetries. Assuming that the momentum equation defines an integrable distribution, we introduce a family of reduced systems. The method of controlled Lagrangians is then applied to these systems resulting in a smooth stabilizing controller

    Hamilton-Jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints

    Full text link
    We extend Hamilton-Jacobi theory to Lagrange-Dirac (or implicit Lagrangian) systems, a generalized formulation of Lagrangian mechanics that can incorporate degenerate Lagrangians as well as holonomic and nonholonomic constraints. We refer to the generalized Hamilton-Jacobi equation as the Dirac-Hamilton-Jacobi equation. For non-degenerate Lagrangian systems with nonholonomic constraints, the theory specializes to the recently developed nonholonomic Hamilton-Jacobi theory. We are particularly interested in applications to a certain class of degenerate nonholonomic Lagrangian systems with symmetries, which we refer to as weakly degenerate Chaplygin systems, that arise as simplified models of nonholonomic mechanical systems; these systems are shown to reduce to non-degenerate almost Hamiltonian systems, i.e., generalized Hamiltonian systems defined with non-closed two-forms. Accordingly, the Dirac-Hamilton-Jacobi equation reduces to a variant of the nonholonomic Hamilton-Jacobi equation associated with the reduced system. We illustrate through a few examples how the Dirac-Hamilton-Jacobi equation can be used to exactly integrate the equations of motion.Comment: 44 pages, 3 figure

    A class of nonholonomic kinematic constraints in elasticity

    Get PDF
    We propose a first example of a simple classical field theory with nonholonomic constraints. Our model is a straightforward modification of a Cosserat rod. Based on a mechanical analogy, we argue that the constraint forces should be modeled in a special way, and we show how such a procedure can be naturally implemented in the framework of geometric field theory. Finally, we derive the equations of motion and we propose a geometric integration scheme for the dynamics of a simplified model.Comment: 28 pages, 7 figures, uses IOPP LaTeX style (included) (v3: section 2 entirely rewritten
    corecore