4 research outputs found

    Route discovery based on energy-distance aware routing scheme for MANET

    Get PDF
    Route discovery proses in a Mobile Ad hoc Network (MANET) is challenging due to the limitation of energy at each network node. The energy constraint limits network connection lifetime thus affecting the routing process. Therefore, it is necessary for each node in the network to calculate routing factor in terms of energy and distance in deciding optimal candidate relay nodes needed to forward packets. This study proposes a new route discovery mechanism called the Energy-Distance Routing Aware (EDRA) that determines the selection of nodes during route discovery process to improve the network connection lifetime. This mechanism comprises of three schemes namely the Energy-Distance Factor Aware (EDFA), the Energy-Distance Forward Strategy (EDFS), and the Energy-Aware Route Selection (EARS). The EDFA scheme begins by calculating each nodes energy level (ei) and the distance (di) to the neighbouring nodes to produce the energy-distance factor value used in selecting the relay nodes. Next, the EDFS scheme forwards route request packets within discovery area of relay nodes based on the number of nodes. Then, the EARS scheme selects stable routing path utilising updated status information from EDFA and EDFS. The evaluation of EDRA mechanism is performed using network simulator Ns2 based on a defined set of performance metrics, scenarios and network scalability. The experimental results show that the EDRA gains significant improvement in the network connection lifetime when compared to those of the similar mechanisms, namely the AODV and the DREAM. EDRA also optimises energy consumption by utilising efficient forwarding decisions on varying scale of network nodes. Moreover, EDRA maximizes network connection lifetime while preserving throughput and packet drop ratio. This study contributes toward developing an efficient energy-aware routing to sustain longer network connection lifetime in MANET environment. The contribution is significant in promoting the use of green and sustainable next generation network technology

    QoS Provision for Wireless Sensor Networks

    Get PDF
    Wireless sensor network is a fast growing area of research, receiving attention not only within the computer science and electrical engineering communities, but also in relation to network optimization, scheduling, risk and reliability analysis within industrial and system engineering. The availability of micro-sensors and low-power wireless communications will enable the deployment of densely distributed sensor/actuator networks. And an integration of such system plays critical roles in many facets of human life ranging from intelligent assistants in hospitals to manufacturing process, to rescue agents in large scale disaster response, to sensor networks tracking environment phenomena, and others. The sensor nodes will perform significant signal processing, computation, and network self-configuration to achieve scalable, secure, robust and long-lived networks. More specifically, sensor nodes will do local processing to reduce energy costs, and key exchanges to ensure robust communications. These requirements pose interesting challenges for networking research. The most important technical challenge arises from the development of an integrated system which is 1)energy efficient because the system must be long-lived and operate without manual intervention, 2)reliable for data communication and robust to attackers because information security and system robustness are important in sensitive applications, such as military. Based on the above challenges, this dissertation provides Quality of Service (QoS) implementation and evaluation for the wireless sensor networks. It includes the following 3 modules, 1) energy-efficient routing, 2) energy-efficient coverage, 3). communication security. Energy-efficient routing combines the features of minimum energy consumption routing protocols with minimum computational cost routing protocols. Energy-efficient coverage provides on-demand sensing and measurement. Information security needs a security key exchange scheme to ensure reliable and robust communication links. QoS evaluation metrics and results are presented based on the above requirements

    Designs for the Quality of Service Support in Low-Energy Wireless Sensor Network Protocols

    Get PDF
    A Wireless Sensor Network (WSN) consists of small, low cost, and low energy sensor nodes that cooperatively monitor physical quantities, control actuators, and perform data processing tasks. A network may consist of thousands of randomly deployed self-configurable nodes that operate autonomously to form a multihop topology. This Thesis focuses on Quality of Service (QoS) in low-energy WSNs that aim at several years operation time with small batteries. As a WSN may include both critical and non-critical control and monitoring applications, QoS is needed to make intelligent, content specific trade-offs between energy and network performance. The main research problem is defining and implementing QoS with constrained energy budget, processing power, communication bandwidth, and data and program memories. The problem is approached via protocol designs and algorithms. These are verified with simulations and with measurements in practical deployments. This Thesis defines QoS for WSNs with quantifiable metrics to allow measuring and managing the network performance. The definition is used as a basis for QoS routing protocol and Medium Access Control (MAC) schemes, comprising dynamic capacity allocation algorithm and QoS support layer. Dynamic capacity allocation is targeted at reservation based MACs, whereas the QoS support layer operates on contention based MACs. Instead of optimizing the protocols for a certain use case, the protocols allow configurable QoS based on application specific requirements. Finally, this Thesis designs sensor self-diagnostics and diagnostics analysis tool for verifying network performance. Compared to the related proposals on in-network sensor diagnostics, the diagnostics also detects performance problems and identifies reasons for the issues thus allowing the correction of problems. The results show that the developed protocols allow a clear trade-off between energy, latency, throughput, and reliability aspects of QoS while incurring a minimal overhead. The feasibility of results for extremely resource constrained WSNs is verified with the practical implementation with a prototype hardware platform having only few Million Instructions Per Second (MIPS) of processing power and less than a hundred kBs data and program memories. The results of this Thesis can be used in the WSN research, development, and implementation in general. The developed QoS definition, protocols, and diagnostics tools can be used separately or adapted to other applications and protocols

    Position-based routing algorithms for three-dimensional ad hoc networks

    Get PDF
    In position-based routing algorithms, the nodes use the geographical information to make routing decisions. Recent research in this field addresses such routing algorithms in two-dimensional (2 D ) space. However, in real applications, the nodes may be distributed in three-dimensional (3 D ) space. Transition from 2 D to 3 D is not always easy, since many problems in 3 D are significantly harder than their 2 D counterparts. This dissertation focuses on providing a reliable and efficient position-based routing algorithms with the associated pre-processing algorithms for various 3 D ad hoc networks. In the first part of this thesis, we propose a generalization of the Yao graph where the cones used are adaptively centered on the nearest set of neighbors for each node, thus creating a directed or undirected spanning subgraph of a given unit disk graph (UDG). We show that these locally constructed spanning subgraphs are strongly connected, have bounded out-degree, are t -spanners with bounded stretch factor, contain the Euclidean minimum spanning tree as a subgraph, and are orientation-invariant. Then we propose the first local, constant time algorithm that constructs an independent dominating set and connected dominating set of a Unit Disk Graph in a 3 D environment. We present a truncated octahedral tiling system of the space to assign to each node a class number depending on the position of the node within the tiling system. Then, based on the tiling system, we present our local algorithms for constructing the dominating sets. The new algorithms have a constant time complexity and have approximation bounds that are completely independent of the size of the network. In the second part of this thesis, we implement 3 D versions of many current 2 D position-based routing algorithms in addition to creating many new algorithms that are specially designed for a 3 D environment. We show experimentally that these new routing algorithms can achieve nearly guaranteed delivery while discovering routes significantly closer in length to a shortest path. Because many existing position-based routing algorithms for ad hoc and sensor networks use the maximum transmission power of the nodes to discover neighbors, which is a very power-consuming process. We propose several localized power-aware 3 D position-based routing algorithms that increase the lifetime of a network by maximizing the average lifetime of its nodes. These new algorithms use the idea of replacing the constant transmission power of a node with an adjusted transmission power during two stages. The simulation results show a significant improvement in the overall network lifetime over the current power-aware routing algorithm
    corecore