4 research outputs found

    Formulation, implementation considerations, and first performance evaluation of algorithmic solutions - D4.1

    Get PDF
    Deliverable D4.1 del projecte Europeu OneFIT (ICT-2009-257385)This deliverable contains a first version of the algorithmic solutions for enabling opportunistic networks. The presented algorithms cover the full range of identified management tasks: suitability, creation, QoS control, reconfiguration and forced terminations. Preliminary evaluations complement the proposed algorithms. Implementation considerations towards the practicality of the considered algorithms are also included.Preprin

    Formulations and identification of algorithmic solutions for enabling opportunistic networks - M4.1

    Get PDF
    Milestone M4.1 del projecte Europeu OneFIT (ICT-2009-257385).This document contains a detailed description of the algorithms to be implemented to manage the opportunistic networks. There are defined according to the functional and system architecture (WP2) to fulfil the technical challenges. These algorithms will implemented during the WP4.2 and validated during the WP4.3Postprint (published version

    Multichannel Cross-Layer Routing for Sensor Networks

    Get PDF
    Wireless Sensor Networks are ad-hoc networks that consist of sensor nodes that typically use low-power radios to connect to the Internet. The channels used by the low-power radio often suffer from interference from the other devices sharing the same frequency. By using multichannel communication in wireless networks, the effects of interference can be mitigated to enable the network to operate reliably. This thesis investigates an energy efficient multichannel protocol in Wireless Sensor Networks. It presents a new decentralised multichannel tree-building protocol with a centralised controller for ad-hoc sensor networks. The proposed protocol alleviates the effect of interference, which results in improved network efficiency, stability, and link reliability. The protocol detects the channels that suffer interference in real-time and switches the sensor nodes from those channels. It takes into account all available channels and aims to use the spectrum efficiently by transmitting on several channels. In addition to the use of multiple channels, the protocol reconstructs the topology based on the sensor nodes’ residual energy, which can prolong the network lifetime. The sensor nodes’ energy consumption is reduced because of the multichannel protocol. By using the lifetime energy spanning tree algorithm proposed in this thesis, energy consumption can be further improved by balancing the energy load in the network. This solution enables sensor nodes with less residual energy to remain functional in the network. The benefits of the proposed protocol are described in an extensive performance evaluation of different scenarios in this thesis
    corecore