63 research outputs found

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    Modelling impulsive noise in indoor powerline communication systems

    Get PDF

    Analysis and evaluation of in-home networks based on HomePlug-AV power line communications

    Get PDF
    [ESP] No hace mucho tiempo, las redes in-home (también denominadas redes domésticas) únicamente se utilizaban para interconectar los diferentes ordenadores de una vivienda, de manera que pudieran compartir una impresora entre ellos. Hoy en día, sin embargo, esta definición es mucho más amplia debido a la gran cantidad de dispositivos existentes en la vivienda con capacidad de conectarse a una red para transmitir y recibir información. En una red in-home actual, podemos encontrar desde teléfonos móviles equipados con conectividad WI-FI a dispositivos NAS (Network Attached Storage), utilizados para almacenar información, imágenes o videos en red, que a su vez pueden ser transferidos a televisiones de alta definición u ordenadores. A la hora de instalar una red de comunicaciones en una vivienda, se persiguen principalmente dos objetivos, reducir el coste de instalación y conseguir una gran flexibilidad de cara a futuras ampliaciones. Una red basada en tecnología PLC (Power Line Communications) cumple estos requisitos ya que, al utilizar la infraestructura de cableado eléctrico existente en la vivienda, es muy sencilla y económica de instalar y ampliar. Dentro de la tecnología PLC existen diferentes estándares, siendo HomePlug-AV (HomePlug Audio-Video o simplemente HPAV) el más extendido en la actualidad para la instalación de redes domésticas. Este estándar permite alcanzar velocidades de transmisión de hasta 200Mbps a través de los cables de baja tensión de una vivienda convencional. El objetivo principal de esta tesis doctoral es aportar nuevas ideas que mejoren las prestaciones de las redes in-home basadas en la tecnología PLC, utilizando como base el estándar Homeplug-AV. Estas redes utilizan una arquitectura centralizada, en la que la mayor parte de la inteligencia de red está concentrada en un coordinador central (CCo, por sus siglas en inglés). Por lo tanto, la mayor parte de las modificaciones propuestas irán encaminadas a mejorar dicho dispositivo, que podrá llegar a convertirse en un gestor de red capaz de manejar conjuntamente interfaces de diferentes tecnologías. En primer lugar, se presenta un análisis detallado del comportamiento del estándar en diferentes situaciones que se pueden producir de manera común en una red doméstica. Este análisis se realizó tanto con dispositivos reales como mediante simulación. Para el segundo tipo de medidas, se diseñó un simulador de la tecnología HomePlug que implementa el nivel físico y el nivel MAC de la misma, junto con modelos de los servicios más utilizados en entornos domésticos. Este simulador se utilizó tanto para estas medidas iniciales como para evaluar las diferentes modificaciones del estándar propuestas posteriormente en este trabajo. Este análisis proporcionó dos resultados significativos. En primer lugar, se comprobó que al introducir un modelo real de nivel físico al protocolo CSMA/CA utilizado a nivel MAC se producían resultados muy diferentes a los presentados en los modelos publicados hasta ese momento. Por ello, se propuso un modelo matemático que incorporaba dichos efectos. En segundo lugar, se identificaron diferentes áreas de la tecnología que eran susceptibles de mejora. El resto de la tesis se centró entonces en la mejora de dichos puntos débiles. El primero de estos puntos débiles está relacionado con las transmisión de datos unicast. El medio PLC es selectivo en frecuencia y muy dependiente del tiempo y de la localización de las estaciones. Incluso es posible que, en un mismo enlace, la capacidad de los enlaces ascendente y descendente sea distinta. En estos entornos, la utilización del protocolo de transporte TCP presenta serios problemas, ya que define gran parte de sus parámetros en función del Round Trip time (RTT) del enlace. Como alternativa se pensó en los códigos Fountain. Este tipo de codificación de fuente permite realizar transmisiones fiables de datos sin necesidad de utilizar un canal de retorno, evitando de esta forma los problemas derivados de las asimetrías de la red. Se realizaron varios experimentos comparando ambas soluciones, y se comprobó que las prestaciones de este tipo de codificaciones superan al protocolo TCP a la hora de transmitir ficheros de manera fiable a través de las redes PLC. Además, los códigos Fountain también se utilizaron para el diseño de otra aplicación. Es muy común que en un escenario doméstico haya disponible más de una tecnología (Wi-Fi, Ethernet, PLC, etc). Tenemos por tanto que una aplicación capaz de integrar interfaces de diferentes tecnologías podría ser muy útil en estos entornos, ya que se podría conseguir un mayor ancho de banda, mayor tolerancia a errores, balanceo de carga, etc. El kernel de Linux dispone de un módulo denominado Bonding que permite agrupar diferentes interfaces Ethernet. Sin embargo, no está preparado para agrupar interfaces de diferentes tecnologías, y mucho menos para tecnologás de capacidad variable como es el caso de PLC o de las comunicaciones inalámbricas. Por ello, se realizó una modificación de dicho driver utilizando para ello los códigos Fountain, que solucionan los problemas que se pueden producir debido a las variaciones de capacidad. Por otra parte, con la actual versión del estándar HomePlug AV, las comunicaciones multicast presentan unas prestaciones muy pobres. Esto es debido a que, a pesar de que el canal PLC es broadcast, la naturaleza de la modulación OFDM (Ortogonal Frequency Division Multiplexing) que se utiliza a nivel físico es punto a punto. Esto hace que las transmisiones simultáneas a un grupo de receptores se traduzcan automáticamente en sucesivas transmisiones punto a punto a los diferentes miembros del grupo. Con esta técnica, la capacidad efectiva de transmisión multicast disminuye de manera muy importante a medida que aumenta el número de receptores. En este trabajo se han propuesto dos técnicas alternativas. La primera consiste en la utilización de un mapa de tonos común para todos los miembros del grupo multicast, asignado a estas comunicaciones los parámetros de modulación del cliente con las peores condiciones de canal. Este algoritmo ha sido tradicionalmente descartado en los sistemas OFDM por sus bajas prestaciones. Sin embargo, la correlación existente entre los diferentes canales de una red PLC hace que su comportamiento sea mucho mejor. Además, se propuso un segundo algoritmo que utilizaba técnicas de optimización para maximizar la tasa de comunicación multicast, obteniendo un mejor comportamiento cuando el número de clientes es elevado. Por último, en redes de capacidad física variable, como es el caso de las redes PLC, las técnicas cross-layer están despertando un gran interés. Este tipo de algoritmos están basado en la compartición de información entre diferentes capas de la estructura OSI para mejorar el comportamiento del sistema. En este trabajo se ha propuesto un algoritmo que modifica los parámetros del protocolo CSMA/CA de nivel MAC utilizando información de nivel físico y los requerimientos de QoS del servicio de niveles superiores. De esta forma se consigue dar prioridad en el acceso al medio a los clientes con problemas de QoS, mejorando de esta forma del comportamiento de la red. Este algoritmo ha sido evaluado mediante simulación en un escenario doméstico típico, comprobando que ofrece unos resultados muy prometedores. [ENG] Not very long time ago, in-home networks (also called domestic networks) were only used to share a printer between a number of computers. Nowadays, however, due to the huge amount of devices present at home with communication capabilities, this definition has become much wider. In a current in-home network we can find, from mobile phones with wireless connectivity, or NAS (Network Attached Storage) devices sharing multimedia content with high-definition televisions or computers. When installing a communications network in a home, two objectives are mainly pursued: Reducing cost and high flexibility in supporting future network requirements. A network based on Power Line Communications (PLC) technology is able to fulfill these objectives, since as it uses the low voltage wiring already available at home, it is very easy to install and expand, providing a cost-effective solution for home environments. There are different PLC standards, being HomePlug-AV (HomePlug Audio-Video, or simply HPAV) the most widely used nowadays. This standard is able to achieve transmission rates up to 200 Mpbs through the electrical wiring of a typical home. The main objective of this thesis is to provide new ideas to improve the performance of PLC technology based in-home networks, using as starting point the HPAV standard. A network based on this technology uses a centralized architecture, in which the most important part of the network intelligence is concentrated in a single device, the Central Coordinator (CCo). Hence, most of the modifications proposed in this work will try to improve this particular device, which can even become a multi-technology central manager, able to combine interfaces of different technologies to improve the network performance. Initially, it is presented a detailed analysis of HPAV performance in some scenarios typically found in a home environment. It was done through simulation and by experimentation using real devices. To obtain the former results, it was designed a HPAV simulator which implements the physical (PHY) and medium access control (MAC) layers of the standard, together with a traffic modeling module which implements the services most commonly found in a home network. This simulation tool was used both in these initial measurements and to evaluate the standard modifications that are proposed in this work. This analysis provides two main results. Firstly, it was found that when a real PHY model is used together with the CSMA/CA MAC protocol the simulation results were very different to those obtained with previously presented mathematical models of this protocol. Hence, it was proposed a new model that considers these effects. Next, some areas of the technology which could be improved were identified. The rest of the thesis was then centered around proposing solutions to these weaknesses. The first weakness solved is related to unicast data transmission. PLC medium is frequency selective and time variant, and it presents a remarkable variation among locations or depending on the connected loads. Even in a single link, the channel capacities between transmitter and receiver can be very asymmetric. In such environments, the use of TCP as transport protocol presents serious problems, since it defines some of its parameters according to the Round Trip Time (RTT). Alternatively, the use of Fountain codes for reliable data transmission in these environments was proposed. These codes allow to transmit information without a feedback channel, overcoming in this way the problems related to the variability of the channel. Different experiments were performed comparing both solutions, concluding that in PLC based networks the performance achieved by Fountain codes outperforms the results obtained with a TCP-based application. In addition, Fountain codes were also used for another application. In home environments, it is very common to find more than one available technology to deploy a network (Wi-Fi, Ethernet, PLC, etc). Therefore, an application that makes possible the aggregation of different interfaces would be very useful, as it will provide higher bandwidth, fault tolerance and load balancing. The Linux Kernel contains a driver (Bonding) which allows Ethernet interfaces aggregation. However, it is not prepared for asymmetric interfaces aggregation and even less for variable capacity technologies like PLC or Wi-Fi. In this work, it is presented a modification of this driver which uses Fountain codes to solve the problems that may arise when asymmetric interfaces are aggregated. On another note, multicast communications in the actual HPAV standard versions presents serious problems. This is because, although PLC medium is broadcast by nature, the Orthogonal Frequency Division Multiplexing (OFDM) modulation used at PHY layer is always point to point. Therefore, multicast communications are carried out as successive point-to-point transmissions to the different members of the group. This technique clearly degrades the performance of multicast services as the number of receivers increases. In this work, they have been proposed two alternative algorithms. The first one consists of using a common tone map for all the multicast group members. This tone map corresponds to the modulation parameters obtained for the client with the worst channel conditions. This algorithm has been traditionally discarded in OFDM systems because of its poor performance. However, in contrast to other technologies (like wireless for example), channel responses in a given PLC network exhibit significant correlation among them. This reduces the differences among the users, improving the performance of this algorithm. In addition, another technique which uses an optimization algorithm to maximize the multicast bit rate is also evaluated, obtaining that its use can be suitable when the number of multicast clients is high. Finally, due to the properties of PLC medium, cross-layer technique are eliciting a big interest. These algorithms are based in the information sharing between adjacent layers in the OSI model to improve the system behavior. In this work, it has been proposed an extension of the HPAV CSMA/CA algorithm which modifies the protocol parameters using PHY layer information and the QoS requirements of the upper-layer services. In this way, priority access to the channel can be provided to the nodes with QoS problems, improving the whole network performance. This algorithm has been evaluated through simulation in a typical home environment with very promising results.Universidad Politécnica de Cartagen

    스마트 그리드를 위한 전력선 통신의 신뢰성 향상 기법 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. 김성철.지구 온난화, 증가하는 에너지 요구 및 최대 부하에 따른 위험 문제 등을 해결하기 위해, 스마트 그리드 구축을 위한 많은 노력들이 진행 중이다. 스마트 그리드를 구현하기 위해서는 향상된 정보통신 기술이 필요하며, 이는 통신 네트워크를 통한 안정성 있는 데이터 전송 여부에 달려있다. 스마트 그리드를 위한 여러 통신기술 후보 중 전력선통신 (PLC), 특히 중전압 (MV) 전력선 상의 고속 PLC에 집중하였다. 전력선 통신 네트워크의 신뢰성은 전력선이 스마트 그리드의 통신 매체로 올바르게 동작하기 위한 선결 조건이다. 본 논문에서는 전력선 통신을 보다 신뢰성 있고 강건하게 만들기 위한 방안에 대하여 연구한다. 이를 위해 OFDM 기반의 전력선 통신 시스템에서 최대비합성 (MRC) 다이버시티 구조를 고안한다. 이러한 시스템에서 최대비합성 다이버시티 이득을 최대화하기 위한 최적의 부반송파 페어링 (subcarrier pairing) 기법을 제안한다. 모의실험을 통해 제안하는 기법의 성능 향상 여부를 검증한다. 다이버시티 이득은 주파수 효율의 감소를 유발한다. 앞의 제안된 부반송파 페어링 기법으로 인해 본질적으로 발생하는 주파수 효율 감소를 해결하기 위해, 무선 MIMO 채널의 전처리 (precoding) 기법을 적용한다. 모의실험 결과를 통해, 높은 변조 지수로 페어링 기법을 이용하는 것이 매우 많은 계산량이 필요한 전처리 기법과 비교하여 유사한 성능을 나타냄을 알 수 있다. 다음으로 최대비합성 기반 최적 부반송파 페어링 기법을 전력선/무선 다이버시티 시스템에 확장한다. 이 시스템에서 전력선과 무선시스템의 각 부반송파들은 짝을 이루어 최대비합성을 수행한다. 전체 데이터 전송률을 최대화하기 위해 앞과 유사한 최적 부반송파 페어링 기법을 제안한다. 모의실험 결과를 통해 제안된 기법이 데이터 전송률과 아웃티지 확률 측면에서 상당한 성능 향상을 나타낸다.To solve the problems of global warming effects, rising energy-hungry demands, and risks of peak loads, many efforts to build a Smart Grid system are underway. A smart grid requires advanced information, and communication technologies to support its intelligent features, and it depends on the reliable data transmission via a communication network. Among the candidates of communication technology for smart grid, we focus on a power line communications (PLC), especially a broadband PLC over a medium voltage (MV) powerline network. The reliability of the PLC network are prerequisite for an appropriate communication medium for smart grid. This dissertation considers a strategy to make the PLC network more reliable and robust. We consider a maximal ratio combining (MRC) diversity scheme for a power line orthogonal frequency division multiplexing (OFDM) system. An optimal subcarrier pairing scheme is proposed to maximize the MRC gain. Numerical results are presented to verify that the proposed scheme provides enhanced performance. Diversity gain comes at the expense of spectral loss. We adopt the precoding scheme proposed for wireless MIMO system to compensate the spectral loss due to the inherent transmission mechanism of the above subcarrier pairing scheme. It is shown that the proposed pairing scheme with higher modulation order achieves a comparable performance to the precoding scheme which requires high computational cost. We extend the optimal subcarrier pairing with MRC approach to powerline/wireless diversity system, where the powerline and wireless subcarriers are paired to perform maximal ratio combining (MRC). An similar optimal subcarrier pairing scheme is proposed to maximize the data rate for MRC reception in powerline/wireless diversity OFDM systems. Numerical results show that, by using the proposed optimal subcarrier pairing, significant performance enhancement can be achieved in terms of Ergodic data rate and outage probability.1 Introduction 1 1.1 Smart Grid 1 1.2 Communication and Networking in the Smart Grid 5 1.2.1 Network Topologies 6 1.2.2 Communication Technologies for the Smart Grid 8 1.3 Dissertation Outline 11 2 Power Line Communications for Smart Grid 12 2.1 Power Line Channel Characteristics 15 2.2 PLC Channel Modeling 15 2.3 PLC Channel Noise Characteristics 17 2.4 MV Channel Description for This Dissertation 19 2.4.1 Implementation of Powerline Channel 19 2.4.2 Typical Topology 22 2.5 MV Powerline Noise 25 3 Optimal Subcarrier Pairing for Maximal Ratio Combining in OFDM Power Line Communications 27 3.1 Motivation 27 3.2 Optimal Subcarrier Pairing for Maximal Ratio Combining 28 3.2.1 System Model 28 3.2.2 Optimal Subcarrier Pairing 31 3.3 Numerical Results 33 3.3.1 Simulation Environments 33 3.3.2 SER Performance Analysis 35 3.3.3 Performance Comparison with Equal Gain Combining 38 3.4 Precoding Scheme to Compensate Spectral Loss Due to Diversity Transmission 40 3.4.1 Review of the Minimum Distance-Based Precoder for MIMO Spatial Multiplexing Systems 41 3.4.2 Optimal Minimum Distance-Based Precoder for QPSK Constellation 41 3.4.3 Application to PLC OFDM System 44 3.4.4 Performance Comparison of max-dmin Precoder for QPSK Modulation 44 3.4.5 Performance Comparison of max-dmin Precoder for 16-QAM Modulation 49 3.4.6 Complexity Analysis 53 3.5 Conclusion 53 4 Optimal Subcarrier Pairing for MRC in Powerline/Wireless Diversity OFDM Systems 55 4.1 Motivation 55 4.2 Powerline/Wireless Diversity OFDM Systems 57 4.3 Optimal Subcarrier Pairing for Powerline/Wireless Diversity 60 4.4 Numerical Results 62 4.4.1 Channel Models 63 4.4.2 Performance Comparison 67 4.5 Conclusion 76 5 Concluding Remarks 77 5.1 Summary 77 5.2 Future Works 78Docto

    Techniques for broadband power line communications: impulsive noise mitigation and adaptive modulation

    Get PDF
    The development of power line communication systems for broadband multimedia applications requires a comprehensive knowledge of the channel characteristics and the main peculiarities that may influence the communication over this channel. PLC has the potential to become the preferred connectivity solution to homes and offices. Additionally, indoor power line networks can serve as local area networks offering high-speed data, audio, video and multimedia applications. The PLC technology eliminates the need for new wires by using an already-existing infrastructure that is much more pervasive than any other wired system. Power line networks, however, present a hostile channel for communication signals. Noise, multipath, selective fading and attenuation are well-known peculiarities of power line grids and. Particularly, random impulsive noise characterized with short durations and very high amplitudes is identified as one of the major impairments that degrade the performance of PLC systems. Orthogonal frequency division multiplexing (OFDM) is the technique of choice for broadband PLC systems. OFDM minimizes the effects of multipath and provides high robustness against selective fading. It is also powerful in impulsive noise environments and performs better than single-carrier modulation methods. If an OFDM symbol is affected by impulsive noise, the effect is spread over multiple subcarriers due to the discrete Fourier transform at the receiver. In order to achieve reliable outcomes, suitable channel and noise models must be used in the investigations. In this thesis, the power line channel transfer function is modelled using a multipath model that was proposed by Zimmermann and Dostert [1], [2]. This model describes the signal propagation scenario and attenuation effects in power line networks. To represent the actual noise scenario in power networks, the noise is classified into two main classes: background noise and impulsive noise. To reduce the effect of impulsive noise, conventional time domain nonlinearities are examined in this thesis under PLC environments. An adaptive-threshold selection method based on minimum bit-error rate (BER) is proposed. At the cost of additional complexity, the effect of impulsive noise is further mitigated using a novel joint time-domain/frequency-domain suppression technique. Since channel coding is essential for most telecommunication systems, we examine convolutional codes combined with interleaving in a PLC channel impaired with AWGN and impulsive noise. The results show substantial performance gains especially in heavily-disturbed environments, where signal-to-noise ratio (SNR) gains of more than 15 dB can be achieved with a code rate of 1/3. Bit-interleaved convolutionally-coded OFDM completely eliminates the effect of impulsive noise in weakly-disturbed noise environments, while a negligible effect may remain in medium-disturbed environments. A new power-loading algorithm that minimizes the transmission power for target BER and data rate constraints is introduced in later chapters of the thesis. Results indicate that the algorithm achieves performance gains of more than 4 dB SNR over conventional OFDM systems. Furthermore, a novel minimum-complexity bit-loading algorithm that maximizes the data rate given BER and power level constraints is proposed in chapter 6. Results show that this bit-loading algorithm achieves almost identical performance as the incremental algorithm but with much lower complexity

    Electromagnetic compatibility of power line communication systems

    Get PDF
    The power system has been used for communication purposes for many decades, although it was mainly the power utility companies that used low bit rates for control and monitoring purposes. In the last ten years, however, the deregulation of the power and telecommunication markets has spurred the idea of using and commercializing the power networks for a range of new communication applications and services. The idea has been developed and implemented into both, narrowband and broadband systems, which are defined in terms of the operation frequency band. Depending on the frequency band, the systems over powerlines can be: Narrow-band. They use frequencies ranging from 3-148.5 kHz in Europe, with the upper frequency extending up to 500 kHz in the United States and Japan. In Europe, this frequency range is standardized by CENELEC Standard EN 50065. Broadband. The used frequency range is 1-30MHz; 1-15MHz for outdoor systems and 15-30MHz for indoor systems. In this frequency range, the standardization situation is still unclear and there exist no regulations. The developed applications and systems use different parts of the power network: medium voltage (MV) and low voltage (LV) cabling for outdoor applications and building cabling for indoor applications. These cables are designed and optimized for power transmission at frequencies of 50/60Hz and represent a hostile medium for transmissions at higher frequencies. This thesis concentrates on electromagnetic compatibility (EMC) aspects and some optimization issues of the broadband systems, currently known as Powerline Communications (PLC) or Broadband Power Line (BPL). The work presented here was preformed in the framework of the European project OPERA (http://www.ist-opera.org/). A short description of the project is given in Chapter 1. The second chapter presents the basis, introduction, description and state of the art of the topics of interest for this thesis. That chapter is divided into three parts. Each of these parts starts with a short introduction to the topic to be addressed. The introductions are intended for those not familiar with the topic at hand and they can be skipped by those already knowledgeable of it. The first part of Chapter 2 gives an overview and introduction to telecommunication issues relevant to the thesis, as well as the general technical specifications of the OPERA system. The second part deals with the transmission medium which, for the case of PLC, is the power system. The fundamentals and the different components of the PLC system are given there and the state of the art regarding the transmission channel is presented. The third part deals with the EMC and standardization issues related to the technology. The main contributions of the thesis are presented in chapters 3 to 7. The PLC technology distinguishes itself from other technologies in that it uses already existing, ubiquitous wiring, so that no new infrastructure is needed. On the other hand, using a channel designed originally for other purposes means that it is not optimized for the frequencies and applications of interest for broadband transmission. If PLC is to compete with other technologies, these problems have to be well understood and solved, so that the system can be optimized by taking into account the parameters and constrains of the already existing medium. Although the PLC system is being improved continuously, there are still concerns about emissions, immunity and standardization. These issues are important since PLC operates in an environment already populated by other services at the same frequencies, so that fair co-existence is needed. Moreover, the PLC modem has a combined mains and telecom port and, as a consequence, the standards for conducted emissions from those two types of ports are not directly applicable. In addition, the symmetry of the cables used is low and, therefore, emissions are higher than, for example, emissions from twisted pair cables used in xDSL. A good understanding of emissions and immunity in PLC systems is therefore of great importance for the optimization of the system and for EMC standardization to be based on objective technical criteria. Even if the basic phenomena are essentially the same as for any other wire transmission system, the complexity and variability of the topologies of existing structures is so large that simple, straightforward solutions are often not applicable. Emissions from the cabling are primarily due to the common mode signals. Part of the energy in this mode is injected by the imperfectly balanced output stages of the PLC modems themselves. In addition, the common mode appears at punctual imbalanced discontinuities and distributed asymmetry along the PLC signal path in the power cables. Chapter 3 presents the work performed to improve our understanding of the sources of the common-mode current and the parameters that influence its behavior, including related measurements and simulations. For the purpose of this study, a model house was built at the EPFL's test site. Different cablings were used to study the influence of different parameters on the behavior of the common-mode current since it is the main source for both types of emissions, conducted and radiated ones. The influence of different parameters such as the cable terminations, the symmetry of the termination, the height of the conductors above the ground, the presence of power outlets, switches, empty and occupied sockets and the topology, are analyzed. The data are also used to test two methods used to simulate the differential-to-common-mode conversion and the conducted emissions, namely the transmission line model and the full wave approach provided by the Method of Moments through the Numerical Electromagnetic Code (NEC). In Chapter 4, problems related to PLC immunity testing are treated. We show that the conversion of the differential mode to the common mode is coupled with the reverse conversion by reciprocity. Due to the low symmetry of PLC cabling, part of the injected common mode test signal is converted into a differential mode signal that interferes with the wanted signal at the input of the modem being tested. Depending on the actual symmetry of the Coupling-Decoupling Network (CDN), not specified in the standards, the immunity test may yield erroneous results due to the effect of this differential mode component. Working under the assumption that the CDN is built to exhibit a symmetry similar to that of PLC networks as inferred from its longitudinal conversion loss, we estimate the differential mode disturbance level that the modems should withstand from a narrowband interferer. The bit error rate induced by the presence of the disturbing differential mode current from the CDN is also estimated, for a total physical channel transmission rate of 200 Mbps, to be of the order of 1×10-5 to 5×10-5. Since these rates can be handled by error correcting coding and MAC ARQ procedures, it is concluded that the modems are not likely to suffer any severe performance degradation due to immunity testing if the CDN exhibits a symmetry similar to that of PLC networks. Simulating the complete PLC network or any significant part of it using numerical techniques such as the method of moments proves to be of limited practical use due to the fact that PLC networks extend over many wavelengths. The transmission line approximation, on the other hand, although more efficient and sufficiently accurate for differential mode calculations, is not directly applicable to simulate the EMC behavior since it neglects the antenna-mode currents that are significant contributors to the radiated emissions. Chapter 5 presents a novel approach to evaluate the antenna-mode currents using a modified transmission line theory, thus making this numerically efficient technique applicable to the estimation of emissions in PLC. An integral equation describing the antenna-mode currents along a two-wire transmission line is derived. It is further shown that, when the line cross-sectional dimensions are electrically small, the integral equation reduces to a pair of transmission line-like equations with equivalent line parameters (per-unit-length inductance and capacitance). The derived equations make it possible to compute the antenna mode currents using a traditional transmission line code with appropriate parameters. The derived equations are tested versus numerical results obtained using NEC and reasonably good agreement is found. Another important EMC issue related to PLC is the mitigation of emissions. Chapter 6 describes a technique that has been proposed to achieve a reduction of emissions associated with indoor PLC networks through the introduction of a 180° out-of-phase replica of the PLC signal into the unused neutral-ground circuit. A modification to this technique is proposed based on the selection of the appropriate amplitude and phase of the auxiliary signal, allowing a higher degree of field attenuation. A way of implementing this technique is proposed and studied, namely the integration of a required antenna into the PLC modems themselves. The measured fields very close to the modem allow the determination of the magnitude and phase of the compensation voltage. The proposed implementation should be used only to handle customer complaints, when emissions should be lowered at locations where PLC signals might cause unwanted interference or when additional capacity is required and it can be obtained through the gained signal to noise margin. Although, in principle, due to nonalignment of the wanted and the compensation field directions, minimizing one component of the field may result in an increase of the other components, we show that the application of the technique results in an overall average reduction of 10-20 dB of all the field components in the region of interest. In the same Chapter 6, we address the more general issue of the application of mitigation techniques' gained emissions margin to increase the overall throughput of PLC systems. We show that an increase in the signal power (made possible by the inclusion of mitigation techniques) leads to a considerable increase in the PLC channel capacity. Using a number of simplifications, we show that the capacity of the channel can indeed be increased by up to 66 Mbps for mitigation efficiencies of only 10 dB. We also present the results of laboratory measurements aimed at studying, under controlled conditions, different characteristics of notching in OPERA PLC modems, such as total and effective notch width, notch depth, maximum notch depth, etc. These measurements show that it is possible to obtain attenuations of up to about 45 dB for notches in all frequency bands, 10MHz, 20MHz and 30MHz. What differs for these three bands is the minimum number of carriers that need to be notched to obtain that maximum attenuation. This is an important point, since, to implement notches that have the required depth and width, one must know how many subcarriers to suppress and how deep these need to be reduced. High density PLC deployment requires the increase of overall system data rate. To achieve the higher data rates, frequency reuse in these systems is needed. In Chapter 7, we present the idea for using so-called blocking filters as a possible solution for a frequency reuse. Experimental data obtained on a real distribution network show that the use of blocking filters can, in certain cases, ensure high enough RF separation of the LV feeders belonging to the same substation. In some cases, even with the possibility to design and integrate effective blocking filters, the system needs to provide additional synchronization mechanisms for frequency reuse

    Transmission of compressed images over power line channel

    Get PDF
    In the telecommunications industry, the use of existing power lines has drawn the attention of many researchers in the recent years. PLC suffers from impulsive noise that can affect data transmission by causing bit or burst errors. In this thesis, PLC channel was used as a transmission scheme to transmit compressed still images using FFT-OFDM. When lossy compression is applied to an image, a small loss of quality in the compressed image is tolerated. One of the challenging tasks in image compression and transmission is the trade-off between compression ratio and image quality. Therefore, we utilized the latest developments in quality assessment techniques, SSIM, to adaptively optimize this trade-off to the type of image application which the compression is being used for. A comparison between different compression techniques, namely, discrete cosine transform (DCT), discrete wavelet transform (DWT), and block truncation coding (BTC) was carried out. The performance criteria for our compression methods include the compression ratio, relative root-meansquared (RMS) error of the received data, and image quality evaluation via structural similarity index (SSIM). Every link in a powerline has its own attenuation profile depending on the length, layout, and cable types. Also, the influences of multipath fading due to reflections at branching point vary the attenuation profile of the link. As a result, we observed the effect of different parameters of the PLC channel based on the number of paths, and length of link on the quality of the image. Simulations showed that the image quality is highly affected by the interaction of the distance of PLC channel link and the number of multipath reflections. The PLC channel is assumed to be subjected to Gaussian and impulsive noises. There are two types of impulsive noise: asynchronous impulsive noise and periodic impulsive noise synchronous to the mains frequency. BER analysis was performed to compare the performance of the channel for the two types of impulsive noise under three impulsive scenarios. The first scenario is named as "heavily disturbed" and it was measured during the evening hours in a transformer substation in an industrial area. The second scenario is named as "moderately disturbed" and was recorded in a transformer substation in a residential area with detached and terraced houses. The third scenario is named as "weakly disturbed" and was recorded during night-time in an apartment located in a large building. The experiments conducted showed that both types of noise performed similarly in the three impulsive noise scenarios. We implemented Bose-Chaudhuri-Hocquenghen (BCH) coding to study the performance of Power Line Channel (PLC) impaired by impulsive noise and AWGN. BCH codes and RS codes are related and their decoding algorithms are quite similar. A comparison was made between un-coded system and BCH coding system. The performance of the system is assessed by the quality of the image for different sizes of BCH encoder, in three different impulsive environments. Simulation results showed that with BCH coding, the performance of the PLC system has improved dramatically in all three impulsive scenarios

    High Speed Turbo Tcm Ofdm For Uwb And Powerline System

    Get PDF
    Turbo Trellis-Coded Modulation (TTCM) is an attractive scheme for higher data rate transmission, since it combines the impressive near Shannon limit error correcting ability of turbo codes with the high spectral efficiency property of TCM codes. We build a punctured parity-concatenated trellis codes in which a TCM code is used as the inner code and a simple parity-check code is used as the outer code. It can be constructed by simple repetition, interleavers, and TCM and functions as standard TTCM but with much lower complexity regarding real world implementation. An iterative bit MAP decoding algorithm is associated with the coding scheme. Orthogonal Frequency Division Multiplexing (OFDM) modulation has been a promising solution for efficiently capturing multipath energy in highly dispersive channels and delivering high data rate transmission. One of UWB proposals in IEEE P802.15 WPAN project is to use multi-band OFDM system and punctured convolutional codes for UWB channels supporting data rate up to 480Mb/s. The HomePlug Networking system using the medium of power line wiring also selects OFDM as the modulation scheme due to its inherent adaptability in the presence of frequency selective channels, its resilience to jammer signals, and its robustness to impulsive noise in power line channel. The main idea behind OFDM is to split the transmitted data sequence into N parallel sequences of symbols and transmit on different frequencies. This structure has the particularity to enable a simple equalization scheme and to resist to multipath propagation channel. However, some carriers can be strongly attenuated. It is then necessary to incorporate a powerful channel encoder, combined with frequency and time interleaving. We examine the possibility of improving the proposed OFDM system over UWB channel and HomePlug powerline channel by using our Turbo TCM with QAM constellation for higher data rate transmission. The study shows that the system can offer much higher spectral efficiency, for example, 1.2 Gbps for OFDM/UWB which is 2.5 times higher than the current standard, and 39 Mbps for OFDM/HomePlug1.0 which is 3 times higher than current standard. We show several essential requirements to achieve high rate such as frequency and time diversifications, multi-level error protection. Results have been confirmed by density evolution. The effect of impulsive noise on TTCM coded OFDM system is also evaluated. A modified iterative bit MAP decoder is provided for channels with impulsive noise with different impulsivity
    corecore