1,932 research outputs found

    Internet of things

    Get PDF
    This is an introductory course to the IoT (Internet of things). In the early chapters the basics about the IoT are introduced. Then basics of IPv6 internet protocol that is the most used in IoT environment as well as main applications, the current state of the market and the technologies that enable the existence of the IoT are described. Finally the future challenges that are considered most important are discussed.Peer ReviewedPostprint (published version

    Federated Learning on Edge Sensing Devices: A Review

    Full text link
    The ability to monitor ambient characteristics, interact with them, and derive information about the surroundings has been made possible by the rapid proliferation of edge sensing devices like IoT, mobile, and wearable devices and their measuring capabilities with integrated sensors. Even though these devices are small and have less capacity for data storage and processing, they produce vast amounts of data. Some example application areas where sensor data is collected and processed include healthcare, environmental (including air quality and pollution levels), automotive, industrial, aerospace, and agricultural applications. These enormous volumes of sensing data collected from the edge devices are analyzed using a variety of Machine Learning (ML) and Deep Learning (DL) approaches. However, analyzing them on the cloud or a server presents challenges related to privacy, hardware, and connectivity limitations. Federated Learning (FL) is emerging as a solution to these problems while preserving privacy by jointly training a model without sharing raw data. In this paper, we review the FL strategies from the perspective of edge sensing devices to get over the limitations of conventional machine learning techniques. We focus on the key FL principles, software frameworks, and testbeds. We also explore the current sensor technologies, properties of the sensing devices and sensing applications where FL is utilized. We conclude with a discussion on open issues and future research directions on FL for further studie

    LoRaWAN device security and energy optimization

    Get PDF
    Resource-constrained devices are commonly connected to a network and become things that make up the Internet of Things (IoT). Many industries are interested in cost-effective, reliable, and cyber secure sensor networks due to the ever-increasing connectivity and benefits of IoT devices. The full advantages of IoT devices are seen in a long-range and remote context. However, current IoT platforms show many obstacles to achieve a balance between power efficiency and cybersecurity. Battery-powered sensor nodes can reliably send data over long distances with minimal power draw by adopting Long-Range (LoRa) wireless radio frequency technology. With LoRa, these devices can stay active for many years due to a low data bit rate and low power draw during device sleep states. An improvement built on top of LoRa wireless technology, Long-Range Wide Area Networks (LoRaWAN), introduces integrity and confidentiality of the data sent within the IoT network. Although data sent from a LoRaWAN device is encrypted, protocol and implementation vulnerabilities still exist within the network, resulting in security risks to the whole system. In this research, solutions to these vulnerabilities are proposed and implemented on a LoRaWAN testbed environment that contains devices, gateways, and servers. Configurations that involve the transmission of data using AES Round Reduction, Join Scheduling, and Metadata Hiding are proposed in this work. A power consumption analysis is performed on the implemented configurations, resulting in a LoRaWAN system that balances cybersecurity and battery life. The resulting configurations may be harnessed for usage in the safe, secure, and efficient provisioning of LoRaWAN devices in technologies such as Smart-Industry, Smart-Environment, Smart-Agriculture, Smart-Universities, Smart-Cities, et

    Towards Mobile Edge Computing: Taxonomy, Challenges, Applications and Future Realms

    Get PDF
    The realm of cloud computing has revolutionized access to cloud resources and their utilization and applications over the Internet. However, deploying cloud computing for delay critical applications and reducing the delay in access to the resources are challenging. The Mobile Edge Computing (MEC) paradigm is one of the effective solutions, which brings the cloud computing services to the proximity of the edge network and leverages the available resources. This paper presents a survey of the latest and state-of-the-art algorithms, techniques, and concepts of MEC. The proposed work is unique in that the most novel algorithms are considered, which are not considered by the existing surveys. Moreover, the chosen novel literature of the existing researchers is classified in terms of performance metrics by describing the realms of promising performance and the regions where the margin of improvement exists for future investigation for the future researchers. This also eases the choice of a particular algorithm for a particular application. As compared to the existing surveys, the bibliometric overview is provided, which is further helpful for the researchers, engineers, and scientists for a thorough insight, application selection, and future consideration for improvement. In addition, applications related to the MEC platform are presented. Open research challenges, future directions, and lessons learned in area of the MEC are provided for further future investigation

    Wireless Sensor Technology Selection for I4.0 Manufacturing Systems

    Get PDF
    The term smart manufacturing has surfaced as an industrial revolution in Germany known as Industry 4.0 (I4.0); this revolution aims to help the manufacturers adapt to turbulent market trends. Its main scope is implementing machine communication, both vertically and horizontally across the manufacturing hierarchy through Internet of things (IoT), technologies and servitization concepts. The main objective of this research is to help manufacturers manage the high levels of variety and the extreme turbulence of market trends through developing a selection tool that utilizes Analytic Hierarchy Process (AHP) techniques to recommend a suitable industrial wireless sensor network (IWSN) technology that fits their manufacturing requirements.In this thesis, IWSN technologies and their properties were identified, analyzed and compared to identify their potential suitability for different industrial manufacturing system application areas. The study included the identification and analysis of different industrial system types, their application areas, scenarios and respective communication requirements. The developed tool’s sensitivity is also tested to recommend different IWSN technology options with changing influential factors. Also, a prioritizing protocol is introduced in the case where more than one IWSN technology options are recommended by the AHP tool.A real industrial case study with the collaboration of SPM Automation Inc. is presented, where the industrial systems’ class, communication traffic types, and communication requirements were analyzed to recommend a suitable IWSN technology that fits their requirements and assists their shift towards I4.0 through utilizing AHP techniques. The results of this research will serve as a step forward, in the transformation process of manufacturing towards a more digitalized and better connected cyber-physical systems; thus, enhancing manufacturing attributes such as flexibility, reconfigurability, scalability and easing the shift towards implementing I4.0

    Low Power Wide Area Networks (LPWAN): Technology Review And Experimental Study on Mobility Effect

    Get PDF
    In the past decade, we have witnessed explosive growth in the number of low-power embedded and Internet-connected devices, reinforcing the new paradigm, Internet of Things (IoT). IoT devices like smartphones, home security systems, smart electric meters, garage parking indicators, etc., have penetrated deeply into our daily lives. These IoT devices are increasingly attached and operated in mobile objects like unmanned vehicles, trains, airplanes, etc. The low power wide area network (LPWAN), due to its long-range, low-power and low-cost communication capability, is actively considered by academia and industry as the future wireless communication standard for IoT. However, despite the increasing popularity of mobile IoT, little is known about the suitability of LPWAN for those mobile IoT applications in which nodes have varying degrees of mobility. To fill this knowledge gap, in this thesis:1. We present a thorough review on LPWAN technology focusing on the mobility effect. 2. We conduct an experimental study to evaluate, analyze, and characterize LPWAN in both indoor and outdoor mobile environments.Our experimental results indicate that the performance of LPWAN is surprisingly susceptible to mobility, even to minor human mobility, and the effect of mobility significantly escalates as the distance to the gateway increases. These results call for development of new mobility-aware LPWAN protocols to support mobile IoT

    Lessons Learned about the Design and Active Characterization of On-Body Antennas in the 2.4 GHz Frequency Band

    Get PDF
    This work addresses the design and experimental characterization of on-body antennas, which play an essential role within Body Sensor Networks. Four antenna designs were selected from a set of eighteen antenna choices and finally implemented for both passive and active measurements. The issues raised during the process of this work (requirements study, technology selection, development and optimization of antennas, impedance matching, unbalanced to balanced transformation, passive and active characterization, off-body and on-body configurations, etc.) were studied and solved, driving a methodology for the characterization of on-body antennas, including transceiver effects. Despite the influence of the body, the antennas showed appropriate results for an in-door environment. Another novelty is the proposal and validation of a phantom to emulate human experimentation. The differences between experimental and simulated results highlight a set of circumstances to be taken into account during the design process of an on-body antenna: more comprehensive simulation schemes to take into account the hardware effects and a custom design process that considers the application for which the device will be used, as well as the effects that can be caused by the human body.Ministerio de EconomĂ­a y Competitividad (Instituto de Salud Carlos III) PI15/00306Junta de AndalucĂ­a PIN-0394-2017UniĂłn Europea "FRAIL
    • …
    corecore