1,086 research outputs found

    Energy Efficient Data Collection and Device Positioning in UAV-Assisted IoT

    Get PDF

    Positioning of multiple unmanned aerial vehicle base stations in future wireless network

    Get PDF
    Abstract. Unmanned aerial vehicle (UAV) base stations (BSs) can be a reliable and efficient alternative to full fill the coverage and capacity requirements when the backbone network fails to provide the requirements during temporary events and after disasters. In this thesis, we consider three-dimensional deployment of multiple UAV-BSs in a millimeter-Wave network. Initially, we defined a set of locations for a UAV-BS to be deployed inside a cell, then possible combinations of predefined locations for multiple UAV-BSs are determined and assumed that users have fixed locations. We developed a novel algorithm to find the feasible positions from the predefined locations of multiple UAVs subject to a signal-to-interference-plus-noise ratio (SINR) constraint of every associated user to guarantees the quality-of-service (QoS), UAV-BS’s limited hovering altitude constraint and restricted operating zone because of regulation policies. Further, we take into consideration the millimeter-wave transmission and multi-antenna techniques to generate directional beams to serve the users in a cell. We cast the positioning problem as an ℓ₀ minimization problem. This is a combinatorial, NP-hard, and finding the optimum solution is not tractable by exhaustive search. Therefore, we focused on the sub-optimal algorithm to find a feasible solution. We approximate the ℓ₀ minimization problem as non-combinatorial ℓ₁-norm problem. The simulation results reveal that, with millimeter-wave transmission the positioning of the UAV-BS while satisfying the constrains is feasible. Further, the analysis shows that the proposed algorithm achieves a near-optimal location to deploy multiple UVABS simultaneously

    UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization

    Get PDF
    In this paper, a UAV is deployed as a flying base station to collect data from time-constrained IoT devices and then transfer the data to a ground gateway (GW). In general, the latency constraint at IoT users and the limited storage capacity of UAV highly hinder practical applications of UAV-assisted IoT networks. In this paper, full-duplex (FD) technique is adopted at the UAV to overcome these challenges. In addition, half-duplex (HD) scheme for UAV-based relaying is also considered to provide a comparative study between two modes. In this context, we aim at maximizing the number of served IoT devices by jointly optimizing bandwidth and power allocation, as well as the UAV trajectory, while satisfying the requested timeout (RT) requirement of each device and the UAV's limited storage capacity. The formulated optimization problem is troublesome to solve due to its non-convexity and combinatorial nature. Toward appealing applications, we first relax binary variables into continuous values and transform the original problem into a more computationally tractable form. By leveraging inner approximation framework, we derive newly approximated functions for non-convex parts and then develop a simple yet efficient iterative algorithm for its solutions. Next, we attempt to maximize the total throughput subject to the number of served IoT devices. Finally, numerical results show that the proposed algorithms significantly outperform benchmark approaches in terms of the number of served IoT devices and the amount of collected data.Comment: 30 pages, 11 figure

    A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches

    Get PDF
    Wireless communication networks have been witnessing an unprecedented demand due to the increasing number of connected devices and emerging bandwidth-hungry applications. Albeit many competent technologies for capacity enhancement purposes, such as millimeter wave communications and network densification, there is still room and need for further capacity enhancement in wireless communication networks, especially for the cases of unusual people gatherings, such as sport competitions, musical concerts, etc. Unmanned aerial vehicles (UAVs) have been identified as one of the promising options to enhance the capacity due to their easy implementation, pop up fashion operation, and cost-effective nature. The main idea is to deploy base stations on UAVs and operate them as flying base stations, thereby bringing additional capacity to where it is needed. However, because the UAVs mostly have limited energy storage, their energy consumption must be optimized to increase flight time. In this survey, we investigate different energy optimization techniques with a top-level classification in terms of the optimization algorithm employed; conventional and machine learning (ML). Such classification helps understand the state of the art and the current trend in terms of methodology. In this regard, various optimization techniques are identified from the related literature, and they are presented under the above mentioned classes of employed optimization methods. In addition, for the purpose of completeness, we include a brief tutorial on the optimization methods and power supply and charging mechanisms of UAVs. Moreover, novel concepts, such as reflective intelligent surfaces and landing spot optimization, are also covered to capture the latest trend in the literature.Comment: 41 pages, 5 Figures, 6 Tables. Submitted to Open Journal of Communications Society (OJ-COMS

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components

    UAV Based 5G Network: A Practical Survey Study

    Full text link
    Unmanned aerial vehicles (UAVs) are anticipated to significantly contribute to the development of new wireless networks that could handle high-speed transmissions and enable wireless broadcasts. When compared to communications that rely on permanent infrastructure, UAVs offer a number of advantages, including flexible deployment, dependable line-of-sight (LoS) connection links, and more design degrees of freedom because of controlled mobility. Unmanned aerial vehicles (UAVs) combined with 5G networks and Internet of Things (IoT) components have the potential to completely transform a variety of industries. UAVs may transfer massive volumes of data in real-time by utilizing the low latency and high-speed abilities of 5G networks, opening up a variety of applications like remote sensing, precision farming, and disaster response. This study of UAV communication with regard to 5G/B5G WLANs is presented in this research. The three UAV-assisted MEC network scenarios also include the specifics for the allocation of resources and optimization. We also concentrate on the case where a UAV does task computation in addition to serving as a MEC server to examine wind farm turbines. This paper covers the key implementation difficulties of UAV-assisted MEC, such as optimum UAV deployment, wind models, and coupled trajectory-computation performance optimization, in order to promote widespread implementations of UAV-assisted MEC in practice. The primary problem for 5G and beyond 5G (B5G) is delivering broadband access to various device kinds. Prior to discussing associated research issues faced by the developing integrated network design, we first provide a brief overview of the background information as well as the networks that integrate space, aviation, and land

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    A review of relay network on UAVS for enhanced connectivity

    Get PDF
    One of the best evolution in technology breakthroughs is the Unmanned Aerial Vehicle (UAV). This aerial system is able to perform the mission in an agile environment and can reach the hard areas to perform the tasks autonomously. UAVs can be used in post-disaster situations to estimate damages, to monitor and to respond to the victims. The Ground Control Station can also provide emergency messages and ad-hoc communication to the Mobile Users of the disaster-stricken community using this network. A wireless network can also extend its communication range using UAV as a relay. Major requirements from such networks are robustness, scalability, energy efficiency and reliability. In general, UAVs are easy to deploy, have Line of Sight options and are flexible in nature. However, their 3D mobility, energy constraints, and deployment environment introduce many challenges. This paper provides a discussion of basic UAV based multi-hop relay network architecture and analyses their benefits, applications, and tradeoffs. Key design considerations and challenges are investigated finding fundamental issues and potential research directions to exploit them. Finally, analytical tools and frameworks for performance optimizations are presented

    On the Peak AoI of UAV-assisted IoT Networks: A Stochastic Geometry Approach

    Full text link
    In this paper, we analyze the peak age of information (PAoI) in UAV-assisted internet of thing (IoT) networks, in which the locations of IoT devices are modeled by a Mat\'{e}rn cluster process (MCP) and UAVs are deployed at the cluster centers to collect the status updates from the devices. Specifically, we consider that IoT devices can either monitor the same physical process or different physical processes and UAVs split their resources, time or bandwidth, to serve the devices to avoid inter-cluster interference. Using tools from stochastic geometry, we are able to compute the mean activity probability of IoT devices and the conditional success probability of an individual device. We then use tools from queuing theory to compute the PAoI under two load models and two scenarios for devices, respectively. Our numerical results show interesting system insights. We first show that for a low data arrival rate, increasing the number of correlated devices can improve the PAoI for both load models. Next, we show that even though the time-splitting technique causes higher interference, it has a limited impact on the mean PAoI, and the mean PAoI benefits more from the time-splitting technique. This is because of the nature of UAV communication, especially at places where devices (users) are spatially-clustered: shorter transmission distances and better communication channels, comparing the links established by the cluster UAV and serving devices (users) to links established by interferers
    corecore