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Energy Efficient Data Collection and Device
Positioning in UAV-Assisted IoT

Zijie Wang, Rongke Liu, Senior Member, IEEE, Qirui Liu, John S. Thompson, Fellow, IEEE,
and Michel Kadoch, Senior Member, IEEE

Abstract—The Internet-of-Things (IoT) will significantly
change both industrial manufacturing and our daily lives. Data
collection and three-dimensional (3D) positioning of IoT devices
are two indispensable services of such networks. However, in
conventional networks, only terrestrial base stations (BSs) are
used to provide these two services. On the one hand, this leads
to high energy consumption for devices transmitting at cell edges.
On the other hand, terrestrial BSs are relatively close in height,
resulting in poor performance of device positioning in elevation.
Due to their high maneuverability and flexible deployment,
unmanned aerial vehicles (UAVs) could be a promising technology
to overcome the above shortcomings. In this paper, we propose
a novel UAV-assisted IoT network, in which a low-altitude UAV
platform is employed as both a mobile data collector and an
aerial anchor node to assist terrestrial BSs in data collection
and device positioning. We aim to minimize the maximum
energy consumption of all devices by jointly optimizing the
UAV trajectory and devices’ transmission schedule over time,
while ensuring the reliability of data collection and required
3D positioning performance. This formulation is a mixed-integer
non-convex optimization problem, and an efficient differential
evolution (DE) based method is proposed for solving it. Numerical
results demonstrate that the proposed network and optimization
method achieve significant performance gains in both energy
efficient data collection and 3D device positioning, as compared
with a conventional terrestrial IoT network.

Index Terms—Internet of Things, unmanned aerial vehicle,
data collection, device positioning, differential evolution.

I. INTRODUCTION

THE Internet-of-Things (IoT), which will dramatically
change the world by connecting massive number of

smart devices to the internet, has received increasing attention
from both the professional community and the public. Some
research estimated that up to 100 billion IoT devices will
be deployed and connected by 2025 [1], ranging from smart
watches and entertainment devices for our everyday lives to
industrial sensors and actuators for manufacturing [2], [3].
With the continuous improvement of its service coverage and
quality, IoT is expected to promote the revolutionary develop-
ment of many traditional industries including agriculture [4],
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Fig. 1. (a) Data collection and (b) device positioning in conventional terrestrial
IoT networks.

retail business [5], transportation [6], etc. Despite the enor-
mous application potential and market demand, the existing
IoT networks still have some drawbacks, which restrict their
further development.

The energy consumption of devices is always a major factor
limiting the network lifetime, since many devices in IoT are
typically required to continuously collect and upload data for
more than ten years without recharging [7]. Existing energy-
saving technologies reduce the energy consumption of devices
by optimizing the sleep schedule or wake-up protocol, such as
the extended discontinuous reception (eDRX) and the wake-
up signal (WUS) for narrowband internet of things (NB-IoT)
[8], [9]. Some recent research pointed out that the transmission
energy consumption for the IoT data collection is much higher
than for reception [10]. So, optimizing the energy consumption
of data collection is believed to be a promising approach to
improve the energy efficiency of IoT networks. In order to re-
duce the energy consumption, it is recommended in [11], [12]
that the device delays its data transmission process until the
channel quality is good enough to transmit data with relatively
low power. However, these approaches are only applicable to
a portion of IoT devices with high mobility. In most existing
IoT networks, base stations (BSs) are commonly fixed on
the ground or buildings, and many devices have very limited
mobility, which means that the channel conditions between
BSs and devices are unchanged most of the time. Thus, even if
the above approaches are applied in the conventional terrestrial
IoT network as shown in Fig. 1(a), collecting data from devices
at cell edges still requires high energy consumption. Energy
efficient data collection in IoT remains an unresolved issue.

Motivated by the explosive growth of the applications re-
quiring location information like mobile marketing and emer-
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gency services [13], device positioning has been considered
as an enabling technology and essential service for future IoT
networks [14]. There are some existing technologies which
have the capability of device positioning, including the Global
Navigation Satellite Systems (GNSS) positioning [15], the
positioning technologies using multiple-input-multiple-output
systems (referred to below as “MIMO positioning”) and the
observed time difference of arrival (OTDoA) positioning [16],
[17], but most of them are not suitable for IoT networks. For
the widely used GNSS positioning technology, it suffers severe
performance degradation in dense urban and indoor environ-
ments where a large number of IoT devices may be deployed
[18]. Besides, the cost of having a GNSS chip in each device
may not be affordable for many low-cost IoT applications [14].
The MIMO positioning technology requires only one BS with
an antenna array to perform high-accuracy 3D positioning.
However, the complexity of MIMO positioning is extremely
high, while most IoT devices are of limited capability, making
this technology unsuitable for IoT networks. Different from
the above two technologies, the OTDoA positioning is a
mature multilateration technology which exploits the downlink
signals of IoT networks to perform device positioning without
additional hardware or complex algorithms. Thus, after careful
and comprehensive consideration of various factors including
positioning accuracy, technology complexity and maturity,
OTDoA has been recognized as the primary positioning tech-
nology for both NB-IoT and LTE-M in 3GPP Release 14 [19].
However, in the conventional terrestrial IoT network as shown
in Fig. 1(b), BSs used as anchor nodes for OTDoA positioning
are relatively close in height. This poor vertical diversity of
anchor nodes severely degrades the vertical accuracy of device
positioning [20]. Up to now, the implementation of high-
accuracy 3D positioning in IoT networks is still an unresolved
issue.

In some typical vertical domains of IoT networks, both the
energy efficient data collection and the high-accuracy 3D po-
sitioning are essential for enabling use cases like environment
monitoring in agriculture and forestry [4], [21]. In these cases,
the conventional IoT networks hardly meet the requirements
due to the sparse deployment and poor vertical diversity
of terrestrial BSs mentioned above. In addition, due to the
high construction and maintenance costs, it is not feasible to
solve these issues simply by increasing the number of BSs,
especially for the applications in remote areas. Therefore, it
is necessary to develop some novel IoT networks and the
corresponding data collection and device positioning methods.

A. Related Work

With their high mobility and flexible deployment, UAV-
based IoT platforms could be promising solutions to the above
issues in existing IoT networks. UAV platforms are particularly
appealing for energy efficient data collection in IoT. Compared
with the fixed terrestrial BSs, UAVs are capable of flying to
places where the channel conditions to selected devices are
good, enabling devices to transmit data with low power or in
a relatively short time [22], [23]. So, even for devices with very
limited mobility, their energy consumption can be effectively

reduced. Besides, UAV platforms are more likely to establish
line-of-sight (LoS) communication links with IoT devices
due to their relatively high altitudes [24], [25]. Potential
applications of UAV platforms for IoT data collection can
be roughly divided into two categories: 1). UAV-enabled IoT
networks, in which single or multiple UAV platforms are used
to collect data from devices [26]–[30], while terrestrial BSs are
only used for backhaul links or UAV control. 2). UAV-assisted
IoT networks [31]–[33], which jointly use UAV platforms and
terrestrial BSs to perform data collection. In references [27]–
[29], the deployment and trajectory design of UAV platforms
were investigated to improve the energy efficiency of data col-
lection in UAV-enabled IoT networks. Reference [30] proposed
a method of jointly optimizing the UAV trajectory and devices’
wake-up schedule to reduce energy consumption. However, in
most IoT scenarios where devices have access to terrestrial
BSs, the UAV-enabled IoT network is not the best choice for
energy efficient data collection. For example, if there is an IoT
device very close to a BS, then it is completely unnecessary to
use a UAV platform to collect data from this device, because
the energy consumption of data transmission from the device
to the BS is already low. Thus, compared to the widely studied
UAV-enabled networks, it is more practical to study the energy
efficient data collection in UAV-assisted IoT networks, which
is one of the objectives of our study.

In addition to being used as mobile data collectors, UAV
platforms also have the potential to enhance the 3D positioning
accuracy of IoT networks. UAV platforms with high-end
navigation equipment like real-time kinematic (RTK) receivers
have the ability to know their locations precisely [34], [35],
thereby enabling them to be employed as aerial anchor nodes.
Since the altitudes of UAV platforms are generally much
higher than that of terrestrial BSs, the application of “UAV
anchor nodes” can effectively improve the vertical diversity
of anchor nodes, thereby enhancing the performance of 3D
OTDoA positioning [20]. The ideas of using UAVs as aerial
anchor nodes were presented in [20], [36]–[38]. The influences
of UAV altitude and trajectory on positioning performance
were analyzed in [36], [37]. However, these two studies mainly
focused on the 2D received signal strength (RSS) positioning,
which cannot meet the demands of IoT networks for 3D device
positioning. In reference [38], a fully functional mini UAV
system was designed for providing 3D positioning service, but
it does not make full use of existing terrestrial BSs. Reference
[20] studied the employment of UAVs for the enhancement
of 3D positioning accuracy of cellular networks, focusing on
position estimation algorithms. Up to now, the optimization of
UAV trajectory and the cooperation between UAV platforms
and terrestrial BSs for enhancing 3D device positioning in IoT
networks have not been fully studied.

B. Main Contributions
In this paper, we propose a novel UAV-assisted IoT network

which consists of a low-altitude UAV platform and multiple
terrestrial BSs, and simultaneously supports the energy effi-
cient data collection and high-accuracy 3D device positioning
services. Specifically, the main contributions of this paper are
summarized as follows.
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Fig. 2. The proposed UAV-assisted IoT network.

• Analysis of the main challenges in conventional terres-
trial IoT networks and design of a novel UAV-assisted
network: In conventional IoT networks, collecting data
from devices at cell edges requires high energy con-
sumption, and the poor vertical diversity of BSs results
in the unsatisfactory performance of device positioning
in elevation. To overcome these challenges and enhance
these two important services of IoT, we propose a UAV-
assisted network, in which a UAV platform acts as both
a mobile data collector and an aerial anchor node.

• Design of UAV-assisted data collection: We propose a
novel data collection design for our UAV-assisted IoT
network and derive the expressions for achievable trans-
mission rates of the ground-to-ground and ground-to-air
channels as well as the device’s energy consumption.
Simulation results demonstrate the superiority of the
proposed data collection design.

• Development of a novel 3D device positioning design
utilizing the UAV as an aerial anchor node to enhance
the vertical positioning accuracy: We propose a design of
UAV-assisted device positioning, and derive the Cramér-
Rao bound (CRB) for evaluating its performance. Simu-
lation results show that the proposed design outperforms
the benchmark design using only terrestrial BSs as anchor
nodes.

• Formulation of the optimization problem for implement-
ing the energy efficient data collection and high-accuracy
device positioning: We aim to minimize the maximum
energy consumption of all devices by optimizing the
UAV trajectory and devices’ transmission schedule, while
ensuring the required positioning accuracy. In particular,
the uncertainty of device location is taken into account in
the formulation of this problem, which has always been
neglected by existing research but is very important for
practical applications.

• Proposal of a DE-based method for solving this opti-
mization problem: We divide the original mixed-integer
non-convex optimization problem into three subproblems
and solve them iteratively using the differential evolution
(DE) algorithm. Numerical results show that the proposed

IoT Transceiver

Flight Computer

Navigation Equipment

Downlink 

Reference 

Signals

Uplink 

Data

GNSS Signals

Software Controller

Fig. 3. Main components of the UAV platform.

method can significantly improve the energy efficiency of
data collection and the accuracy of device positioning.

To the best of our knowledge, this work is the first to study
both the data collection and the device positioning in a UAV-
assisted IoT network.

II. SYSTEM DESIGN

In this paper, as shown in Fig. 2, we consider a UAV-assisted
IoT network consisting of a low-altitude UAV platform, N ter-
restrial BSs and K stationary user devices. BSs and devices are
denoted by sets N ∆

= {1, 2, · · · , N} and K ∆
= {1, 2, · · · ,K},

respectively. The BSs are located in a hexagonal grid with
inter site distance of 500 m [39], and the user devices are
uniformly dropped within the coverage of terrestrial BSs.
The 3D location of each BS n is fixed and available to
each device, and can be denoted by the horizontal coordinate
un = (xBS,n, yBS,n)

T ∈ R2×1, n ∈ N , and the height
hBS . The precise location of each device is unknown, and
only sketchy information about the space where each device
could be deployed is available based on devices’ operation
modes. At time T0, each device k has generated sensed data
of rk bits and needs to upload it to the core network. Besides,
we assume that the device location information is critical to
the network due to users’ requirements. Thus, in addition to
uploading data, each device also needs to accurately locate
itself utilizing network facilities.

The performance of data collection and device positioning
services provided by BSs are unsatisfactory, especially in
terms of energy efficiency and 3D positioning accuracy. Thus,
in this paper, a UAV platform is used to assist BSs. The reason
for using only one UAV platform is that we assume that the
devices served by the proposed network do not need to fre-
quently upload sensed data or locate themselves (perhaps only
3 to 5 times per day), which is a common assumption for most
low-power IoT applications [40]. Thus, the employment of one
UAV is sufficient to meet the requirements. As shown in Fig.
3, in order to support the data collection and device positioning
services, the UAV platform carries three main payloads: an IoT
transceiver, a flight computer and the navigation equipment.
The full-featured IoT transceiver is used to collect data from
IoT devices and send reference signals through the downlink
channel. The navigation equipment used to obtain the real-time
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precise location of the UAV platform itself could be some
high-end GNSS receivers like RTK receivers. The software
controller running on the flight computer maneuvers the UAV
flying autonomously along a pre-determined trajectory [38],
and decides the time for providing services based on the
location information obtained by the navigation equipment.

The UAV flies at a fixed altitude H , and its maximum speed
is Vmax. Although the transmission energy consumption could
be reduced when the UAV moving up and down in height to go
close to different devices, this strategy may not be desirable
for the positioning service, since the continuous change in
altitudes of the UAV may affect the vertical diversity. Thus,
in this paper, we consider a 2D UAV trajectory at a constant
altitude. In practice, the parameters H and Vmax could be
flexibly adjusted according to safety considerations and the
type of UAV used (fixed-wing UAV or rotary-wing UAV).
During the period from T0 to T0 + T , the UAV platform
flies from the initial location qs ∈ R2×1 to the final location
qe ∈ R2×1 along a specific trajectory. Both the initial and
final locations are pre-determined. We assume that the UAV
platform carries enough batteries or fuel to support long-term
flight missions, and the flight distance is limited primarily
by its maximum speed. In order to ensure that it is feasible
for the UAV to fly from qs to qe within T seconds, the
parameters qs and qe should satisfy ‖qs − qe‖ ≤ VmaxT .
During its flight, the UAV platform acts as a mobile data
collector and aerial anchor node, together with BSs to provide
data collection and 3D positioning services for devices. When
the UAV arrives at the locations where it is supposed to provide
services, it will wake up the corresponding IoT devices using
the downlink control links and inform them to upload data or
locate themselves.

In addition, since the time interval between two consecutive
flight missions of the UAV platform is quite long, the prior
information obtained in the previous flights, such as the
previous positioning results, may not be very useful for the
trajectory planning of the current flight. Thus, in the proposed
network, the UAV trajectory in each flight mission is designed
individually.

A. Design of UAV-Assisted Data Collection
As shown in Fig. 4, when designing the data collection

process in the UAV-assisted IoT network, we consider the
scenario consisting of one device, one BS and one UAV
platform. Assume that the horizontal coordinate and height of
the device are known and are denoted by w = (x, y)

T ∈ R2×1

and hIoT , respectively. This assumption will be relaxed in
subsection D for the joint data collection and device posi-
tioning scenarios where the precise location of the IoT device
is unknown. The projection of the UAV platform’s location
on the ground at time t (t ∈ [T0, T0 + T )) is denoted by
q (t) = (xUAV (t) , yUAV (t))

T ∈ R2×1. In this scenario,
there are two kinds of channels that need to be analyzed,
namely the ground-to-ground (G2G) channel between the de-
vice and the BS and the ground-to-air (G2A) channel between
the device and the UAV platform.

Depending on the environment in which the network is
located, the G2G uplink channel can be modeled as a Rayleigh

UAV

IoT Device BS
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nn
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Fig. 4. UAV-assisted data collection.

(urban or suburban areas) fading channel or a Gaussian
channel (rural areas). For a Rayleigh fading channel, the
instantaneous channel coefficient is composed of a large-scale
power attenuation (path loss) and a time-varying small-scale
fading coefficient. Since the relative distance between the BS
and the device remains unchanged, the path loss of the G2G
channel remains constant and can be easily expressed as:

PLG2G = β0d
α
IoT−BS

= β0

(
(hBS − hIoT )

2
+ ‖u−w‖2

)α/2
,

(1)

where β0 =
(

4πfc
c

)2

is the reference free space path loss at a
distance of 1 m; fc is the main frequency of the G2G channel;
c is the speed of light; α is the path loss exponent (PLE).
Denote the small-scale fading coefficient at time t as ρG2G (t),
the instantaneous capacity (bits/s) of the G2G channel is given
by:

CG2G (t) = B · log2

(
1 +
|ρG2G (t)|2P
σ2PLG2G

)
, (2)

where B is the signal bandwidth; P is the constant transmis-
sion power of the device; σ2 is the noise power. It can be seen
that the capacity of the G2G channel changes dynamically due
to the time-varying nature of fading channels. As analyzed in
[30], if we set some restrictions on the outage probability of
the G2G channel according to practical application require-
ments, the achievable transmission rate of the G2G Rayleigh
fading channel can be calculated in bits/s as follows:

RG2G = B · log2

(
1+

F−1 (ε)P

σ2PLG2G

)

=B ·log2

1+
F−1 (ε)P

σ2β0

(
(hBS−hIoT)2

+‖u−w‖2
)α/2

 ,

(3)

where ε is the maximum tolerable outage probability for
a specific application; F (·) is the cumulative distribution
function (CDF) of |ρG2G (t)|2, and F−1 (ε) is its inverse
function. Furthermore, if the network is located in a rural area,
the G2G channel is modeled as a Gaussian channel. Then, the
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achievable transmission rate of the G2G Gaussian channel can
be easily calculated in bits/s as follows:

RG2G=B ·log2

1+
P

σ2β0

(
(hBS−hIoT)2

+‖u−w‖2
)α/2

 .

(4)
In the UAV-assisted IoT network, the G2A channel is

assumed to be dominated by the LoS component. This assump-
tion is quite common in literature, e.g., [25], [41], because the
elevation angle of the UAV platform relative to the device is
typically greater than that of the BS, which results in a higher
probability of a LoS communication link [23]. Therefore,
only the path loss needs to be taken into consideration when
analyzing the G2A channel, which can be expressed as:

PLG2A (t) = β0d
α
IoT−UAV

= β0

(
(H − hIoT )

2
+ ‖q (t)−w‖2

)α/2
.

(5)

Then, the achievable transmission rate (bits/s) of the G2A
channel is given by:

RG2A (t)=B · log2

(
1 +

P

σ2PLG2A (t)

)

=B ·log2

1+
P

σ2β0

(
(H−hIoT)2

+‖q(t)−w‖2
)α/2

 .

(6)

It is worth noting that the achievable transmission rate of
the G2A channel changes dynamically over time due to the
mobility of the UAV platform. For convenience, the time
period T is discretized into M short time slots of length δt
seconds, i.e., T = Mδt. The value of the parameter δt is
small enough that the UAV platform could be considered to
be stationary within each time slot. Thus, in each time slot,
the channel conditions and achievable transmission rates of
the G2G and G2A channels are also unchanged. In the fol-
lowing, the horizontal coordinate of the UAV platform and the
achievable transmission rates of the G2G and G2A channels
in time slot m are denoted by q [m], RG2G [m]

∆
= RG2G · δt

and RG2A [m]
∆
= RG2A (mδt) · δt, respectively.

In this UAV-assisted network, we can control the transmis-
sion schedule of the device, including the time slots in which
the device transmits its sensed data and the destination of
the data transmission (BS or UAV platform). The transmis-
sion schedule of the device can be denoted by two vectors
xBS ∈ Z1×M and xUAV ∈ Z1×M . Setting xBS [m] = 1
means that the device transmits its data to the BS in time slot
m, while xBS [m] = 0 means the opposite. xUAV [m] has a
similar meaning to xBS [m]. Since the transmission power P
is constant, if the vectors xBS and xUAV are determined, the
energy consumption of the device can be calculated as follows:

θ =

M∑
m=1

(xBS [m] + xUAV [m]) · E, (7)

where E ∆
= P · δt is the transmission energy consumption of

the device within a time slot. It is noteworthy that θ obtained
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w
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u2
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Fig. 5. UAV-assisted device positioning.

by the above formula is only the energy consumption of one
IoT device. As will be described in Section III below, the
maximum energy consumption of all devices is regarded as
the evaluation metric for the data collection service provided
by the proposed network. Similarly, the amount of sensed data
uploaded by the device during the time period T is given by:

I =

M∑
m=1

(xBS [m]·RG2G[m] + xUAV [m]·RG2A[m]). (8)

In order to reduce the energy consumption, the device
should choose to use the link with higher transmission rate
between the G2G and G2A channels in each time slot, thereby
reducing the number of time slots used for data transmission.
Besides, as shown in (6), the achievable transmission rate of
the G2A channel is determined by the instantaneous location
of the UAV platform. Thus, the energy saving effect of data
collection in the UAV-assisted IoT network is directly related
to the UAV trajectory. These inferences and the superiority of
our UAV-assisted data collection design will be demonstrated
in Section V.A by a simulation experiment.

B. Design of UAV-Assisted Device Positioning

Due to its relatively low complexity and implementa-
tion cost, the OTDoA positioning technology is selected to
support the device positioning service in our UAV-assisted
IoT network, which is also in accordance with the current
development trend of IoT networks. In OTDoA, a device
measures the time-of-arrival (ToA) of reference signals from
multiple time synchronized anchor nodes (BSs), and subtracts
them from a ToA of a reference node to obtain the time-
difference-of-arrival (TDoA) observations. As shown in Fig.
1(b), each TDoA observation corresponds to a hyperbola, and
the intersection point of multiple hyperbolas is regarded as the
estimate of the device’s location. As mentioned above, the 3D
positioning accuracy of OTDoA suffers severe degradation in
conventional terrestrial IoT due to the poor vertical diversity of
BSs. Thus, in this paper, the UAV platform is also employed as
an aerial anchor node to improve the performance of OTDoA
positioning.

Considering the scenario shown in Fig. 5, three BSs and the
UAV platform are used as anchor nodes to locate a device, and
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σ2
G2G (τ) = L∗ ·

σ2β0

(
(hBS − hIoT )

2
+ ‖ui −w‖2

)α/2
Pt,BS

+ µNLoSσ
2
NLoS (τ) , µNLoS =

{
0 LoS Scenarios
1 NLoS Scenarios

, (15)
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the BS 1 is the reference node. The three TDoA observations
obtained by the device can be expressed as:

∆τi,1 = τi − τ1, i = 2, 3 or UAV, (9)

where τi is the ToA of the reference signal from node i
measured by the device. Then, the device itself or the IoT
network can obtain the estimate of the device’s location by
solving the following equations:

c∆τi,1 =

√
‖ui −w‖2 + (hBS − hIoT )

2

−
√
‖u1 −w‖2 + (hBS − hIoT )

2
, i = 2, 3,

(10)

c∆τUAV,1 =

√
‖q [m]−w‖2 + (H − hIoT )

2

−
√
‖u1 −w‖2 + (hBS − hIoT )

2
.

(11)

In this paper, the Cramér-Rao bound (CRB), which repre-
sents the maximum achievable accuracy of device’s location
estimation, is used to evaluate the performance of 3D OTDoA
positioning. We note that the Doppler effect caused by the
relative motion between the UAV platform and IoT devices
may also affect the positioning accuracy, but for this paper, we
neglect this influence since there are many mature technologies
can be used to estimate and compensate the Doppler frequency
shift [42], [43]. To obtain the CRB for OTDoA positioning,
we first analyze the performance of the ToA measurement by
taking the narrowband positioning reference signal (NPRS) in
NB-IoT system as an example. Similar to the PRS signal in
LTE system, the NPRS is a newly defined downlink reference
signal based on orthogonal frequency division multiplexing
(OFDM) modulation, and is used to support OTDoA posi-
tioning in NB-IoT. The distribution of the NPRS signal in
the time-frequency resource grid (RG) of an in-band deployed

NB-IoT system is shown in Fig. 6(a). It can be seen that the
bandwidth of the NPRS signal is 180kHz (one LTE resource
block) and is much smaller than that of the LTE PRS signal,
which is disadvantageous to the ToA measurement. To address
this problem, the scheme of repeatedly transmitting a large
number of NPRS subframes as shown in Fig. 6(b) could be
adopted.

As mentioned in reference [44], the variance of the ToA
measurement using any OFDM signal of length one symbol
can be expressed as:

σ2
Sym (τ) =

T 2
s

8π2 · SNR ·
∑
k∈Na

p2
k · k2

, (12)

where Ts and SNR are the symbol duration and signal-to-
noise ratio of the received OFDM signal, respectively; Na
is the subset of subcarriers used to transmit reference signal;
pk is the relative power weight of each subcarrier k. Denote
the subset of symbols containing NPRS signal within one
subframe as S. Then, the variance of the ToA measurement
error for NSub OFDM subframes is given by:

σ2
ToA (τ) =

T 2
s

NSub · 8π2 · SNR ·
∑
s∈S

∑
k∈Ns,a

p2
k · k2

, (13)

whereNs,a is the subset of subcarriers containing NPRS signal
in symbol s. It is worth noting that the above formula is only
applicable for LoS propagation scenarios, which mainly exist
in the G2A channels in our UAV-assisted IoT network. For
G2G channels, in which the multipath or NLoS propagation
of signals are very common, we assume that some advanced
signal processing algorithms have been employed at the IoT
device to eliminate the impacts of multipath and NLoS on the
ToA measurement. Without loss of generality, we model the
influence of the non-ideality of the above algorithms on the
ToA measurement as an additional Gaussian noise component.
So, the variances of the ToA measurements for the G2A and
G2G channels can be expressed as:

σ2
G2A(τ)=L∗·

σ2β0

(
(H−hIoT )

2
+‖q [m]−w‖2

)α/2
Pt,UAV

, (14)

where L∗ = T 2
s

/(
NSub · 8π2 ∑

s∈S

∑
k∈Ns,a

p2k · k2
)

; Pt,UAV

and Pt,BS are the transmission power of the UAV platform
and terrestrial BSs, respectively. Then, the covariance matrix
of the TDoA observations in (9) is given by:

R =

 σ2
1 + σ2

2 σ2
1 σ2

1

σ2
1 σ2

1 + σ2
3 σ2

1

σ2
1 σ2

1 σ2
1 + σ2

UAV

 , (16)

where σ2
1 , σ2

2 and σ2
3 calculated by (15) are variances of the

ToA measurements corresponding to three BSs, and σ2
UAV
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Fig. 7. B-Spline curves generated by (a) 5 or (b) 7 control points (Parameter
KB is the order of the curve).

is calculated by (14). Finally, the CRB for 3D OTDoA
positioning can be expressed as:

CRB (q [m]) = c2 · tr
((

HTR−1H
)−1
)
, (17)

where H is the Jacobian matrix of the TDoA equations

H =


∂c∆τ2,1
∂x

∂c∆τ2,1
∂y

∂c∆τ2,1
∂hIoT

∂c∆τ3,1
∂x

∂c∆τ3,1
∂y

∂c∆τ3,1
∂hIoT

∂c∆τUAV,1

∂x
∂c∆τUAV,1

∂y
∂c∆τUAV,1

∂hIoT

 , (18)

and the expressions of ∂c∆τi,1
∂x , ∂c∆τi,1∂y and ∂c∆τi,1

∂hIoT
are shown

in [45].
It can be clearly seen from the above analysis that the

performance of device positioning service in our UAV-assisted
IoT network is directly related to the instantaneous location
of the UAV platform when transmitting the NPRS signal.
Furthermore, we assume that for an IoT device, the UAV
platform only provides positioning service at the location
with the best positioning performance (minimum CRB) along
its trajectory. Thus, the performance of UAV-assisted device
positioning depends mainly on the UAV trajectory and the
geometry of BSs used for positioning, which will be studied
in the following. The superiority of our UAV-assisted device
positioning design will be demonstrated in Section V.B by a
simulation experiment.

C. Model of UAV Trajectory

In most existing research on the applications of UAVs
in IoT networks, the UAV trajectory is simply represented
as a sequence of discrete waypoints connected by straight
line segments. However, this kind of trajectories are only
applicable for a limited number of small rotary-wing UAVs
with the ability to make sharp turns during their flights.
For most large rotary-wing UAVs and fixed-wing UAVs, it
is unrealistic to change the flight direction instantly at each
waypoint due to their relatively large turning radius. Besides,
as mentioned in subsection A, the distance between any two
adjacent waypoints should be small enough to ensure that the
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Fig. 8. Models of device location uncertainty for (a) data collection and (b)
device positioning.

condition of the G2A channel is approximately unchanged
within a time slot. So, a large number of waypoints are needed
to represent a “straight line segments” type UAV trajectory,
which greatly increases the complexity of trajectory design.

As shown in Fig. 7, in this paper, B-Spline curves are used
to represent the UAV trajectory, which have the following
advantages compared with the conventional “straight line
segments” type trajectories:

- With B-Spline curves, only a few control points are need-
ed to generate a very complicated trajectory, resulting
in relatively low complexity of trajectory design and
optimization.

- B-Spline curves provide at least first order derivative
continuity, making them suitable as the trajectories for
UAVs, especially the fixed-wing UAVs.

The specific process of generating a UAV trajectory with
B-Spline curves is described in [46] and can be simplified as
follows:

Q = B−Spline (C) , (19)

where Q = {q [m] ,∀m} is the set of the UAV platfor-
m’s locations during M time slots; C = {c1, c2, · · · cNc}
(c1 = qs, cNc

= qe) is the set of the coordinates of control
points. In the following, the UAV trajectory is optimized by
adjusting the corresponding control points, i.e., the set C.

D. Model of Device Location Uncertainty

In practical applications, the precise locations of IoT devices
are commonly unknown before the network provides the
positioning service. As described in subsections A and B,
the calculation of both the achievable transmission rate for
data collection and the CRB for device positioning requires
the location information of devices. Thus, the uncertainty
of device location inevitably affects the performance of IoT
networks, but has always been neglected by existing research.
In this paper, we assume that sketchy prior information about
the space that each device could exist can be obtained in
advance based on devices’ operation modes. Then, we model
the uncertain space of each device’s location as a sphere with
center at

(
w̃T

k , h̃IoT,k

)
and radius rUn, as shown in Fig. 8.

It can be seen that we consider the worst cases when
analyzing the impacts of device location uncertainty on the
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performance of our UAV-assisted IoT network. As shown in
Fig. 8(a), for data collection, we assume that the device is
located at the farthest point in the sphere from the collector
(BS or UAV platform), resulting in the lowest transmission
rates. The reason we make this assumption is to ensure
the reliability of data collection, that is, each device should
complete the transmission of its data within M time slots in
any case.

Since there is no closed-form expression for the CRB for 3D
OTDoA positioning, the location uncertainty model for device
positioning is much more complex than that for data collection.
As shown in Fig. 8(b), when analyzing device positioning, we
place a number of sampling points in the sphere and calculate
the CRB corresponding to each of them. Then the maximum
CRB obtained through the above process is treated as the
performance evaluation of positioning service in the presence
of device location uncertainty. This approach aims to ensure
the reliability of device positioning, that is, the accuracy of 3D
OTDoA positioning should meet devices’ requirements even
in the worst case.

III. PROBLEM FORMULATION

As mentioned above, the UAV trajectory and devices’
transmission schedule are two main factors affecting the
performance of our UAV-assisted IoT network. In this sec-
tion, to enable the energy efficient data collection and high-
accuracy device positioning, the design of these two factors is
formulated as an optimization problem. Our aim is to improve
the energy efficiency of data collection, while ensuring the
reliability of data collection and required 3D positioning
performance. In a nutshell, the minimization of the maximum
energy consumption of all devices is regarded as the objective
function, and the 3D positioning accuracy is regarded as one
of the constraints. Before modeling this problem, we first
introduce the constraints used in the problem formulation as
follows:

(1) Energy consumption constraint: This constraint is used
to ensure that the energy consumption of each device k
does not exceed θ, which is a slack variable representing the
maximum energy consumption to be minimized:

M∑
m=1

(
xkUAV [m] + xkBS [m]

)
· Ek ≤ θ, ∀k. (20)

(2) Reliable data collection constraint: This constraint en-
sures that the sensed data of each device is reliably collected
by the IoT network within T seconds:
M∑
m=1

(
xkUAV [m]RkG2A [m]+xkBS [m]RkG2G [m]

)
≥ rk, ∀k.

(21)
(3) Transmission scheduling constraints: In each time slot,

each device could choose to simply remain silent or transmit
its data to the BS or the UAV platform, but cannot simultane-
ously transmit to both of them. Thus, we have

xkUAV [m] ∈ {0, 1} , xkBS [m] ∈ {0, 1} , ∀k,m, (22)

xkUAV [m] + xkBS [m] ≤ 1, ∀k,m. (23)

(4) Constraint on the number of devices accessing the UAV
platform: Unlike BSs, the UAV platform generally cannot
receive and process too much sensed data at the same time
due to its limited resources and capabilities, which means that
the number of devices communicating with the UAV platform
in each time slot should be limited. To this end, we have

K∑
k=1

(
xkUAV [m]

)
≤ L, ∀m, (24)

where L is the maximum allowable number of devices access-
ing the UAV platform in each time slot, and can be flexibly
adjusted according to users’ demands and the performance of
IoT communication payloads in practical implementation.

(5) Constraint on 3D positioning accuracy:

min (CRBk (q [m])) ≤ ρk, ∀k, (25)

where CRBk (q [m]) is the CRB for 3D OTDoA positioning
for device k in time slot m, which can be calculated by (17)
and is directly related to the instantaneous location of the UAV
platform q [m].

(6) Constraints on UAV trajectory:

‖q [m]− q [m− 1]‖ ≤ Dmax, ∀m ≥ 2, (26)

q [1] = qs, q [M ] = qe, (27)

where Dmax
∆
= Vmax ·δt is the distance that the UAV platform

flies at the maximum speed for one time slot.
It is noteworthy that constraints (21) and (25) are formulated

with the precise locations of IoT devices, which are commonly
unavailable in practical applications. Therefore, we utilize the
model of device location uncertainty introduced in Section II
to rewrite these two constraints as follows:

M∑
m=1

(
xkUAV [m] Und

(
RkG2A [m]

)
+ xkBS [m] Und

(
RkG2G [m]

))
≥ rk, ∀k,

(28)

min (Unp (CRBk (q [m]))) ≤ ρk, ∀k, (29)

where Und (·) and Unp (·) are two functions for dealing with
the device location uncertainty in data collection and device
positioning, respectively. The implementation details of these
two functions are described in Section II.D and shown in
Fig. 8. For both the data collection and device positioning,
we focus on the worst cases in the presence of location
uncertainty, so the new constraints (28) and (29) can ensure
that the performance of our UAV-assisted IoT network meets
the requirements.

The optimization problem of interest is formulated as fol-
lows:

(P1) : min
X,C,θ

θ (30)

s.t. C1:
M∑
m=1

(
xkUAV [m]+xkBS [m]

)
·Ek ≤ θ, ∀k

C2:
M∑
m=1

(
xkUAV [m] Und

(
RkG2A [m]

)
+ xkBS [m] Und

(
RkG2G [m]

))
≥rk, ∀k

C3: xkUAV [m]∈{0, 1} , xkBS [m]∈{0, 1} , ∀k,m
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C4: xkUAV [m] + xkBS [m] ≤ 1, ∀k,m

C5:
K∑
k=1

(
xkUAV [m]

)
≤ L, ∀m

C6: min (Unp (CRBk (q [m]))) ≤ ρk, ∀k
C7: Q = B−Spline (C)

C8: ‖q [m]− q [m− 1]‖ ≤ Dmax, ∀m≥2

C9: q [1] = qs,q [M ] = qe,

where X =
{
xkBS ,x

k
UAV ,∀k

}
; C1 represents the maximum

data transmission power consumption of all devices; C2 is
the reliability requirements for the data collection process;
C3 specifies the feasible region of the optimization variable
X; C4 is the constraint that each device cannot communicate
simultaneously with the BS and the UAV platform; C5 limits
the number of devices accessing the UAV platform at the same
time; C6 is the requirement of 3D positioning accuracy for
each device k; C7 represents the process of generating the
UAV trajectory utilizing a set of control points and B-Spline
curves; C8 and C9 are the speed and initial/final location
constraints for the UAV platform, respectively.

IV. THE PROPOSED DE-BASED OPTIMIZATION METHOD

Due to its non-convex constraints (C2, C6 and C7) as
well as the binary variable X, the optimization problem P1
formulated in the previous section is a mixed-integer non-
convex problem, which is very difficult to solve optimally.
Moreover, there is no closed-form expression for the CRB
used to evaluate the performance of 3D OTDoA positioning,
making this problem more complicated. To find a satisfactory
quasi-optimal solution, we propose an optimization method
that divides the original problem into three subproblems and
solves them iteratively using the differential evolution (DE)
algorithm.

The proposed DE-based optimization method is summarized
in Algorithm 1. The first subproblem solved by the proposed
method is the selection of terrestrial BSs, in which we use
a novel “fast base station selection algorithm” developed
in this paper to assign each device the BSs that provide
data collection and device positioning services. Then, we
study the optimization of devices’ transmission schedule for
a given UAV trajectory, which is the second subproblem. The
energy consumption corresponding to the optimal schedule is
treated as the evaluation of the UAV trajectory, and is also
used to construct the fitness function of the DE algorithm.
Finally, in the third subproblem, the DE algorithm is used to
search for the UAV trajectories with improved fitness values.
Subproblems 2 and 3 are iteratively solved until the number
of iterations exceeds a pre-determined threshold.

A. Subproblem 1: Selection of Base Stations

In our UAV-assisted IoT network, the UAV platform cooper-
ates with terrestrial BSs to provide services for IoT devices. As
analyzed in Section II, both the achievable transmission rate
of the G2G channel and the CRB for device positioning are
related to the locations of BSs used, that is, the selection of the
BSs used to serve each device has a influence on the network

Algorithm 1 Proposed DE-Based Optimization Method
Input: Number of devices K, parameters of device location

uncertainty (w̃k, h̃IoT,k and rUn), maximal number of
iterations lmax, population size Np in the DE algorithm.

Initialization:
1: Solve the subproblem of BSs selection (P2) with the

proposed fast base station selection algorithm according
to parameters w̃k, h̃IoT,k and rUn;

2: Randomly generate the initial population of feasible in-
dividuals P0

∆
=
{
I0,1,· · ·, I0,Np

}
(each I0,i is a control

point set excluding the first and last control points)
and the corresponding group of UAV trajectories Q0

∆
={

Q0,1,· · ·,Q0,Np

}
;

3: Solve the subproblem 2 (P3) to obtain the optimal trans-
mission schedule X0,i (i ∈ {1,· · ·, Np}) and energy con-
sumption θ0,i for each UAV trajectory in Q0;

4: Find i∗= arg min
i∈{1,···,Np}

(θ0,i); Set the best individual I∗←I0,i∗ ,

the corresponding transmission schedule X∗←X0,i∗ and
energy consumption θ∗ ← θ0,i∗ ;

5: l← 0;
Repeat:
6: Solve the subproblem 3-A: Generate a trial population

P̄l+1
∆
=
{̄
Il+1,1,· · ·, Īl+1,Np

}
and the corresponding tra-

jectory group Q̄l+1 with the mutation and crossover
operations of the DE algorithm;

7: Solve the subproblem 2 (P3) to obtain X̄l+1,i and θ̄l+1,i;
8: Solve the subproblem 3-B: Generate a new population

Pl+1 from Pl and P̄l+1 with the selection operation of
the DE algorithm, as well as Xl+1,i and θl+1,i;

9: Find i∗ = arg min
i∈{1,··· ,Np}

(θl+1,i); If θl+1,i∗ < θ
∗: I∗ ← Il+1,i∗ ,

X∗ ← Xl+1,i∗ , θ∗←θl+1,i∗ ;
10: l← l + 1;
Until: l = lmax;
Output: I∗, X∗ and θ∗.

performance. Thus, at the beginning of the proposed method,
we assign each device the BSs that provide data collection and
device positioning services.

In our UAV-assisted data collection design described in
Section II.A, except for the UAV platform, each IoT device
establishes communication with only one terrestrial BS. To
reduce the energy consumption, the transmission rate of the
G2G channel for each device should be as large as possible,
so that the sensed data could be transmitted in the shortest
time with a constant power. Thus, in this subproblem, the
nearest BS of each device, which commonly corresponds to
the G2G channel with the highest transmission rate, is selected
to provide the data collection service.

As mentioned in [45], at least four anchor nodes are required
to provide 3D OTDoA positioning service for each IoT device.
Moreover, the geometry of anchor nodes relative to the device
can strongly affect the positioning accuracy. In our UAV-
assisted device positioning design described in Section II.B,
the UAV platform is innovatively employed as an aerial anchor
node to enhance the performance of device positioning. Due to
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Fig. 9. The proposed fast base station selection algorithm.

the relatively high altitude, the employment of the UAV plat-
form greatly improves the vertical diversity of anchor nodes,
which guarantees the vertical accuracy of device positioning.
Thus, the horizontal positioning accuracy of each device is
the major consideration in the selection of the terrestrial BSs
for positioning. Horizontal dilution of precision (HDOP) is
a powerful tool for evaluating the influence of the geometry
of anchor nodes on the horizontal positioning accuracy, and
a small HDOP implies satisfactory positioning performance.
Therefore, when selecting the BSs for positioning, we aim
to select the optimal subset corresponding to the minimum
HDOP from all BSs. Furthermore, considering its extremely
limited processing capability, each IoT device only uses three
BSs as anchor nodes in addition to the UAV platform. Then,
the selection of the BSs for positioning can be formulated as
the following combinatorial optimization problem:

(P2) : min
o

HDOP (o,wk, hIoT,k) (31)

s.t. o ∈ O.

where o is a subset consisting of three BSs used for posi-
tioning; O is the set containing all possible combinations of
selecting 3 BSs from N BSs, i.e., O = {o1,o2, · · · ,oG},
where G =

(
N
3

)
; HDOP (·) is the function for computing

the HDOP corresponding to a certain subset of BSs, the
expression is derived in [47]. When the number of BSs N
is relatively small, the optimal solution to this problem can be
easily obtained by traversing all possible subsets contained in
O. However, it is quite impractical to use the same traversal
method to solve problem P2 when the number of possible
subsets G is very large due to a large N . In practical
applications, it is not necessary to find the optimal subset
of BSs corresponding to the minimum HDOP, since there
are some other subsets whose HDOPs are small enough to
guarantee satisfactory horizontal positioning accuracy. Inspired

Algorithm 2 Fast Base Station Selection Algorithm for (P2)
Preliminary Selection:
1: Compute the elevation φk,n and azimuth ϕk,n between the

IoT device k and each base station n;
2: Select the BS n∗ with the minimum elevation as the

reference node (Fig. 9(a)), i.e., n∗ = arg min
n∈N

φk,n;

3: Set three grouping reference azimuths: ϕ∗1 =ϕk,n∗ , ϕ∗2 =
ϕk,n∗ + 2π

3 and ϕ∗3 =ϕk,n∗ + 4π
3 (Fig. 9(b));

4: Group the BSs according to the difference between the
azimuth of each BS and grouping reference azimuths (Fig.
9(c)), that is, the BS n is assigned to group i (i∈{1, 2, 3})
if |ϕk,n−ϕ∗i |≤∆ϕ;

5: If the number of BSs assigned to group i is zero, increase
the value of ∆ϕ and regroup the BSs until there is at least
one BS in each group;

Secondary Selection:
6: Select one BS from each group to form a subset and

compute its corresponding HDOP. Traverse all subsets
available through this approach, the subset o∗ with min-
imum HDOP is assigned to the device k for positioning
(Fig. 9(d)).
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Fig. 10. An application example of the proposed fast base station selection
algorithm: (a) scenario, (b) BS selection results.

by the satellite selection algorithms widely used in global
navigation satellite systems (GNSSs) [48], a novel “fast base
station selection algorithm” is developed in this paper to select
a quasi-optimal subset for each device from a large number of
BSs. The implementation process of the proposed algorithm
is shown in Fig. 9 and Algorithm 2.

We tested the proposed algorithm in a terrestrial IoT
network shown in Fig. 10(a), where 19 BSs are uniformly
deployed on a hexagonal grid with inter site distance (ISD)
of 500 m. Our algorithm was used to select the BSs that
provide positioning service for each of the 6 IoT devices
at different locations, and the selection results are shown
in Fig. 10(b). Intuitively, the BSs selected by our algorith-
m for each device are approximately evenly distributed in
azimuth, which is generally considered to be beneficial for
positioning. Numerically speaking, the HDOP corresponding
to each selected subset of BSs does not exceed 1.5, which
means that the proposed algorithm could effectively guarantee
accurate horizontal positioning. It is worth noting that the
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Fig. 11. Correspondence between time slots and time blocks.

precise location of each device is used in problem P2. If the
device location uncertainty mentioned in Section II.D is taken
into account, wk and hIoT,k in P2 can be replaced by the
coordinates of the sampling points in the sphere shown in
Fig. 8(b), and the proposed algorithm is used to assign each
sampling point the BSs that provide positioning service. The
assignment results will be used in the subsequent procedures
to calculate the CRB corresponding to each sampling point.

B. Subproblem 2: Transmission Scheduling for IoT devices

In our UAV-assisted IoT network, once the UAV trajectory
is selected, the transmission schedule determines the devices’
energy consumption. Thus, in this subsection, we focus on
the subproblem of devices’ transmission schedule optimization
for a given UAV trajectory. However, the binary nature of
the transmission schedule variables xkBS and xkUAV makes
this subproblem quite complicated. To solve it efficiently, we
modify the transmission scheduling model adopted in our
network. Similar to the approach described in [30], we first
divide each time slot into Z short time blocks, as shown
in Fig. 11. The value of the parameter Z is large enough
that dZxe ≈ Zx, where 0 ≤ x ≤ 1 and dye represents
the operation of rounding y up to the nearest integer. Then,
the binary constraint C3 in problem P1 can be relaxed as
0≤xkUAV [m]≤1, 0≤xkBS [m]≤1,∀k,m, and the subproblem
of devices’ transmission scheduling for a given UAV trajectory
can be formulated as follows:

(P3) : min
X,θ

θ (32)

s.t. C3: 0 ≤ xkUAV [m] ≤ 1,

0 ≤ xkBS [m] ≤ 1, ∀k,m
C1, C2, C4, C5.

It can be seen that the problem P3 is a standard linear
programming (LP) problem, which can be easily solved by
many mature software tools like CVX in Matlab. By solving
this subproblem, we could obtain the minimum energy con-
sumption corresponding to a certain trajectory, which will be
used in the subsequent procedures to evaluate and optimize
the UAV trajectory.

C. Subproblem 3: UAV Trajectory Optimization

As mentioned in the above subsection, for a given UAV
trajectory, we can obtain its corresponding optimal transmis-
sion schedule and minimum energy consumption by solving
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Fig. 12. Representation of individuals in the DE algorithm.

a LP problem. In this subsection, we study how to search
for a UAV trajectory with satisfactory data collection and
device positioning performance, that is, the optimization of
UAV trajectory. However, even if the devices’ transmission
schedule has been optimized in advance in problem P3, it is
still very difficult to solve the remaining subproblem of UAV
trajectory optimization. First of all, this subproblem is still a
non-convex optimization problem due to the existence of the
non-convex constraints C2 and C6. Moreover, the lack of a
closed-form expression for CRB calculation in C6 means that
the successive convex optimization technique used to solve
non-convex trajectory optimization problems in [30], [49] is
not applicable to our UAV-assisted IoT network. Thus, in
this paper, we apply the differential evolution (DE) algorithm,
which is one of the most popular derivative-free optimization
algorithms and is suitable for solving non-convex problems,
to optimize the UAV trajectory.

In the DE algorithm, a candidate solution of the optimiza-
tion problem is called an “individual”, and multiple individuals
form a “population”. The individuals in the population are
iteratively improved by simulating the evolution and natural
selection processes, so as to obtain a satisfactory solution.
As mentioned in Section II.C, in this paper, a UAV trajec-
tory is generated by a set of control points and B-Spline
curves. So, when utilizing the DE algorithm to optimize
the UAV trajectory, each individual Il,i (the i-th individual
in the l-th iteration) is represented by a control point set
excluding the first and last control points which are fixed
(c1 = qs, cNc = qe), as shown in Fig. 12. In addition, each
coordinate xl,ic,b or yl,ic,b (b ∈ {2,· · ·, Nc − 1}) in an individual
is called a “gene”, and the a-th gene in the i-th individual
is denoted as gl,ia (a∈{1,· · ·, 2Nc − 4}). The purpose of UAV
trajectory optimization is to minimize the devices’ energy con-
sumption while satisfying a series of constraints, including the
reliability constraint for data collection (C2), the positioning
accuracy constraint (C6), as well as the constraint on the UAV
platform’s speed (C8). Thus, we set the fitness function used
to evaluate UAV trajectories as follows:

fit =
1

αEngfEng+αDatfDat+αPosfPos+αvfv
. (33)

It can be seen that the fitness function adopted in this
subsection is the inverse of the weighted sum of four different
terms, where αX are weights and the meaning of each term
is as follows: 1). fEng is the minimum energy consumption
corresponding to the UAV trajectory, which is obtained by
solving the problem P3. Since the DE algorithm constantly
searches for the individuals with higher fitness values during it-
s iterations, the placement of the term fEng in the denominator
of the fitness function can promote the reduction of the energy
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consumption. 2). fDat is a penalty term for the constraint C2.
Once a UAV trajectory fails to guarantee the reliability of the
data collection service provided for each device, i.e., there is
no feasible solution to the problem P3, we set fDat = 1 and
add a penalty αDat to the denominator of the fitness function,
so as to reduce the fitness value of this infeasible trajectory.
Similarly, 3). fPos and 4). fv are the penalty terms for not
meeting the constraints C6 and C8, respectively. Moreover,
the values of weights αDat, αPos and αv should be much
larger than that of αEngfEng , so that a UAV trajectory will be
assigned a very low fitness value as long as it does not satisfy
all of the constraints. With this strategy, infeasible trajectories
are eliminated during the iterations of the DE algorithm,
ensuring that the final optimization result is feasible.

In this subproblem of UAV trajectory optimization, Np
feasible individuals (control point sets) are randomly gen-
erated at the beginning of the DE algorithm to form the
initial population P0, as shown in Algorithm 1. Then, three
operations: mutation, crossover and selection are iteratively
performed to continuously update the population and search
for better individuals. In the proposed DE-based optimization
method, the mutation and crossover operations are used in step
6 (subproblem 3-A) to generate a trial population P̄l+1. In the
mutation operation, for each individual Il,i in the population
Pl, we generate a mutant individual Îl,i as follows:

Îl,i = Il,r1 + F (l) · (Il,r2 − Il,r3) , (34)

where r1, r2 and r3 are integers randomly selected from
{1,· · ·, Np} and satisfy r1 6=r2 6=r3 6= i; The term (Il,r2−Il,r3)
is called the differential vector, which determines the direction
of the mutation; F (l) is a scaling factor used to control
the amplification of the differential vector. Unlike existing
research in which the scaling factor F is typically set to a
constant ∈ [0, 2], F (l) is treated as a function of the iteration
number l in this paper, which can be expressed as:

F (l) =

{
F0 · 2λ1 , if 0 ≤ l ≤ l∗

F0 · (1− λ2)
2
, otherwise,

(35)

where

λ1 = exp

(
1− l∗

l∗ − l + 1

)
, λ2 =

l − l∗

lmax − l∗
,

and F0 is a constant ∈ [0, 1]; l∗ ∈ [0, lmax] is the pre-
determined cut-off point of the piecewise-defined function
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Fig. 14. Effects of using the DE algorithm to optimize the UAV trajectory.

F (l). Fig. 13 shows the variation of the scaling factor F (l)
as the iteration number l increases. It can be seen that in
the first segment l ∈ [0, l∗], the value of F (l) is relatively
high and gradually changes from 2F0 to F0, so that the
DE algorithm could efficiently explore the feasible region by
utilizing the mutation operation. Then, in the second segment
l ∈ [l∗+1, lmax], F (l) drops rapidly from F0 to 0 within
a few iterations, which promotes the convergence of the
DE algorithm and the acquisition of the final optimization
result. After the mutation operation, the crossover operation is
applied to fuse the mutant individual Îl,i and the corresponding
original individual Il,i to generate a trial individual Īl+1,i

according to

ḡl+1,i
a =

{
ĝl,ia , if rand (a) ≤ CR or a = rnbr (i)

gl,ia , if rand (a) > CR and a 6= rnbr (i) ,
(36)

where ḡl+1,i
a and ĝl,ia are the a-th genes in the trial individual

Īl+1,i and the mutant individual Îl,i, respectively; CR ∈ [0, 1]
is the pre-determined crossover probability; rand (a) is a
uniform random number ∈ [0, 1] and rnbr (i) is an integer
randomly selected from{1,· · ·, 2Nc − 4}. Finally, after the trial
population is obtained through the mutation and crossover
operations, we use the selection operation to select individuals
from the trial population P̄l+1 and the original population Pl

to generate a new population Pl+1 for the next iteration, as
mentioned in step 8 (subproblem 3-B) of Algorithm 1. In the
DE algorithm, the greedy criterion is used to decide the source
(Pl or P̄l+1) of each individual in the new population, which
can be expressed as:

Il+1,i =

{
Īl+1,i, if fit

(̄
Il+1,i

)
≥ fit (Il,i)

Il,i, otherwise.
(37)

With this individual selection strategy, during the iterations
of the DE algorithm, inferior individuals with relatively low
fitness values are constantly replaced by superior individuals
with high fitness values obtained through the mutation and
crossover operations. After the last iteration, the individual
with the highest fitness value in the population is regarded as
the final optimization result. The effects of using the above
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TABLE I
SIMULATION PARAMETERS

Parameter Value

Number of time slots (M ) 200

Length of time slots (δt) 2 s

Main frequency (fc) 2.1 GHz

Signal bandwidth (B) 180 kHz

Symbol duration of the OFDM signal (Ts) 1
/(
1.5× 104

)
s

Noise power (σ2) -111 dBm

Free space path loss at 1m (β0) 38.89 dB

Path loss exponent (α) 2

Number of BSs (N ) 19

Height of BSs (hBS ) 30 m

BS layout Hexagonal grid

Inter site distance (ISD) 500 m

Transmission power of BSs (Pt,BS ) 40 dBm

UAV altitude (H) 60 m

Maximum speed of the UAV platform (Vmax) 200 m/s

Number of control points (Nc) 5

Initial location of the UAV platform (qs) (−1000, 0)T m

Final location of the UAV platform (qe) (1000, 0)T m

Maximum allowable number of devices accessing
the UAV platform (L)

1

Transmission power of the UAV platform (Pt,UAV ) 40 dBm

Distribution of the IoT device (horizontal) Uniform

Distribution of the IoT device (vertical) (h̃IoT,k) U (10, 20) m

Radius of location uncertainty sphere (rUn) 10 m

Transmission power of IoT devices (Pk) -10 dBm

Amount of sensed data for each IoT device (rk) 20 Mbits

Required 3D positioning CRB (ρk) 1 m2

Maximal iteration number of DE algorithm (lmax) 110

Cut-off point of the function F (l) (l∗) 100

Population Size (Np) 20

Parameter of mutation scaling factor (F0) 0.5

Crossover probability (CR) 0.9

Weight of energy consumption term fEng in the
fitness function (αEng)

1

Penalty values (αDat, αPos and αv) 0.01

DE algorithm to solve the subproblem of UAV trajectory
optimization are shown in Fig. 14. It can be seen that as
the iteration number increases, both the minimum and the
average energy consumption of the UAV trajectory population
decrease constantly. The final optimized trajectory reduces
the energy consumption of our UAV-assisted IoT network by
about 32% compared with the unoptimized trajectory. These
phenomena demonstrate the effectiveness of the proposed DE-
based optimization method.

V. NUMERICAL RESULTS

In this section, a series of simulation experiments are con-
ducted and the corresponding numerical results are provided
to verify the validity and performance of the proposed network
and optimization method. First, we show the superiority of the
proposed UAV-assisted data collection design over the con-
ventional design using only terrestrial BSs via an experiment.
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Fig. 15. Evaluation of the proposed UAV-assisted data collection design: (a)
scenario, (b) devices’ energy consumption.

Similarly, another experiment is conducted to prove that the
proposed UAV-assisted device positioning design could bring
a significant improvement in the vertical positioning accuracy.
Finally, the effectiveness and superior performance of the
proposed DE-based optimization method are demonstrated
by two numerical simulations. Table I summarizes the key
simulation parameters used in this section.

A. Evaluation of the UAV-Assisted Data Collection Design

In this subsection, we consider a UAV-assisted network
consisting of a UAV platform, 11 terrestrial BSs and 5 IoT
devices, as shown in Fig. 15(a). Besides, 7 different UAV
trajectories are designed utilizing the B-Spline curve model
mentioned in Section II.C. The devices’ energy consumption
of the conventional data collection design using only the
terrestrial BSs and that of the proposed UAV-assisted design
with different UAV trajectories are compared in Fig. 15(b).
It can be seen that the energy consumption varies greatly
among different designs and different trajectories, ranging
from 6.7 × 10−3J to 2.1 × 10−3J. Obviously, the energy
consumption of the proposed design is much smaller than
that of the conventional design no matter which one of the 7
trajectories is adopted, and the 4th trajectory could even reduce
the devices’ energy consumption by 68.7%. These phenomena
reflect the superiority of the proposed UAV-assisted data
collection design. Moreover, from the 1st trajectory to the
7th trajectory, the distance between the UAV platform and
each IoT device first decreases and then increases, and the
corresponding energy consumption has the same trend. The
energy consumption corresponding to the best trajectory (4th)
is only 40% of that corresponding to the worst trajectory (1st).
Thus, in our UAV-assisted IoT network, the UAV trajectory is
one of the main factors that affects the energy efficiency. In
order to prolong the lifetime of the network, it is necessary to
optimize the trajectory of the UAV platform.
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100m

Fig. 16. Scenario of positioning performance evaluation.

Fig. 17. Heat maps of the positioning error: the horizontal error of the (a)
conventional and the (b) proposed designs, and the vertical error of the (c)
conventional and the (d) proposed designs.

B. Evaluation of the UAV-Assisted Device Positioning Design

In this subsection, we compare the positioning performance
of the proposed UAV-assisted device positioning design with
that of the conventional design using only the terrestrial BSs.
As shown in Fig. 16, we consider a scenario consisting of 7
terrestrial BSs and 7 UAV platforms, and each UAV platform
is deployed 100 m above a BS. The OTDoA positioning
technology described in Section II.B is used in both the
conventional and proposed designs to provide 3D positioning
service. We use the “heat map” method to numerically evaluate
and compare the positioning performance of the two designs.
When implementing this method, we first equally divide the
area shown in Fig. 16 into a number of small square regions
with a slide length of 10 m, and then calculate and record the
standard deviation of the positioning error of the two designs
while traversing each small region. After all the small regions
have been traversed, the four heat maps shown in Fig. 17 can
be generated based on the recorded standard deviation.

It can be seen from Fig. 17(a) and Fig. 17(b) that there
is no significant difference between the horizontal positioning
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Fig. 18. Evaluation of the proposed method: (a) scenario 1, (b) optimized
UAV trajectory.
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Fig. 19. Evaluation results corresponding to scenario 1: (a) comparison be-
tween the G2A and G2G channels, (b) optimized device-to-UAV transmission
schedule.

accuracy of the proposed design and that of the conventional
design. This is expected since the horizontal positioning accu-
racy in both the proposed and conventional designs is primarily
determined by the geometry of the terrestrial BSs used for po-
sitioning, which has already been optimized with the proposed
fast base station selection algorithm introduced in Section
IV.A. However, the employment of UAV platforms greatly
improves the vertical accuracy of the OTDoA positioning, as
can be seen from Fig. 17(c) and Fig. 17(d). Compared with the
conventional design, the proposed design reduces the range of
the vertical positioning error from 2 m to 0.5 m, which means
an 75% improvement in the vertical positioning accuracy.
From the above numerical results, it can be concluded that
the proposed UAV-assisted device positioning design could
significantly improve the vertical positioning accuracy without
reducing the horizontal accuracy, which is the main advantage
of the proposed design.

C. Evaluation of the Proposed Method (G2G LoS Dominated)

In this subsection, the validity and performance of the
proposed DE-based optimization method are first tested and
evaluated in the scenario 1 shown in Fig. 18(a), where 4 IoT
devices with the requirements for the data collection and 3D
positioning services are considered, and the G2G channels
between the devices and terrestrial BSs are modeled as LoS
dominated. Fig. 18(b) and Fig. 19(b) show the optimized UAV
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Fig. 20. Statistical results corresponding to scenario 1: (a) reduction of the
energy consumption of data collection, (b) improvement of 3D positioning
accuracy.

trajectory and devices’ transmission schedule obtained by the
proposed method.

Intuitively, the optimized trajectory reduces the distance
between the UAV platform and each device as much as
possible, thereby improving the qualities of the G2A channels.
As shown in Fig. 19(a), this inference is confirmed by a
comparison between the achievable transmission rates of the
G2A and G2G channels, where the value of 1 indicates that
the quality of the G2A channel is better than that of the G2G
channel. It can be seen that the optimized UAV trajectory
can make the G2A channels for three of the four devices
(IoT device 2, 3 and 4) better than the corresponding G2G
channels in a considerable period of time, which provides
an opportunity to reduce the energy consumption of data
collection. In fact, the optimized transmission schedule shown
in Fig. 19(b) does take the full advantage of this opportunity,
that is, it enables the devices to transmit their data to the UAV
platform only for the certain period of time when the G2A
channel is better than the G2G channel. It is worth noting that
for device 1 in this scenario, the quality of its G2A channel
is always worse than that of the G2G channel, and all its
sensed data are collected by the corresponding BS. This is
not surprising since device 1 is very close to a BS, so that
it could transmit all its data to the BS with very low energy
consumption. Thus, it is not necessary for the UAV platform
to participate in the data collection process of device 1. This
phenomenon reflects an advantage of the proposed UAV-
assisted IoT network over the widely studied UAV-enabled
networks, that is, in addition to the UAV platform, we also
make full use of the existing terrestrial infrastructures. As
compared with a conventional IoT network, the optimized
UAV trajectory and devices’ transmission schedule reduce the
energy consumption of data collection by 47.88% and improve
the accuracy of 3D device positioning by 98.61%.

Furthermore, Fig. 18(b) and Fig. 19(b) are the optimization
results of a single simulation, which have certain randomness.
In order to make the performance evaluation of the proposed
method more statistically significant, we repeated this simu-
lation 100 times and the results obtained are shown in Fig.
20. The probability density function (PDF) of the reduction
of the energy consumption is shown in Fig. 20(a), where
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Fig. 21. Evaluation results corresponding to scenario 2: (a) scenario 2
and optimized UAV trajectory, (b) optimized device-to-UAV transmission
schedule.
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Fig. 22. Statistical results corresponding to scenario 2: (a) reduction of the
energy consumption of data collection, (b) improvement of 3D positioning
accuracy.

the reduction ranges from 44.83% to 48.74%. The PDF of
the positioning accuracy improvement is shown in Fig. 20(b),
where the improvement ranges from 96.82% to 99.04%. The
functions 1− CDF (CDF: cumulative density function) are
represented by red dash-dot lines in Fig. 20(a) and (b), which
can be interpreted as: the probability of reducing the energy
consumption by more than 47.82% is 50%, and the probability
of improving the positioning accuracy by more than 98.45%
is 50%.

D. Evaluation of the Proposed Method (G2G Rayleigh Fad-
ing)

In this subsection, we consider a more practical scenario
shown in Fig. 21(a), where 7 IoT devices are considered
and the G2G channels are assumed to be Rayleigh fading
channels. Compared with the above scenario where the G2G
channels are simply modeled as LoS dominated, this scenario
is more realistic for IoT networks deployed in urban or
suburban environments. Here, the CDF of |ρG2G (t)|2 can
be expressed as F (z) = 1 − Q1

(
0,
√

2z
)
, where Q1 (a, b) is

the Marcum Q function [50]. We set the maximum tolerable
outage probability of the G2G channels to 0.01. Besides,
as mentioned in Section II.B, the performance of the ToA
measurement will also be degraded when the G2G channels
are Rayleigh fading channels. In this scenario, the value of



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

σ2
NLoS (τ) in (15) is set to 0.11 ns2. The optimized UAV

trajectory and devices’ transmission schedule are shown in
Fig. 21(a) and Fig. 21(b), and the statistical results are shown
in Fig. 22. It can be seen that in this scenario, the proposed
network and optimization method still maintain satisfactory
performance. The energy consumption is reduced by about
95.48% and the positioning accuracy is improved by about
94.86%. It is noteworthy that the energy saving effect of the
proposed network and method in this scenario is much better
than that in the scenario 1. This is because the presence of the
small-scale fading greatly reduces the achievable transmission
rates of the G2G channels, thereby increasing the energy
consumption of data collection in a conventional terrestrial
IoT network. However, the data collection service provided by
the UAV platform is not affected due to the LoS-dominated
G2A channels. Thus, the employment of the UAV platform can
bring more significant improvements to the energy efficiency
of data collection when the G2G channels are Rayleigh fading
channels.

VI. CONCLUSION

In this paper, a novel UAV-assisted IoT network is proposed
to achieve the goal of providing energy efficient data collection
and high-accuracy 3D device positioning services, in which
a UAV platform is employed as a mobile data collector and
aerial anchor node. Analysis and simulation show that the UAV
trajectory and devices’ transmission schedule are two main
factors affecting the performance of the proposed network.
Thus, to achieve our objectives, the design of these two factors
is formulated as an optimization problem of minimizing the
maximum energy consumption of all devices while ensuring
the required positioning performance. The formulated prob-
lem is a mixed-integer non-convex problem, which is very
difficult to solve optimally. Moreover, there is no closed-form
expression for the CRB used to evaluate the 3D positioning
performance. To overcome these challenges and obtain a
satisfactory solution, we develop an efficient optimization
method based on the differential evolution algorithm. The
numerical results demonstrate that the proposed network and
optimization method can significantly improve the 3D device
positioning performance and lead to a notable reduction of
the energy consumption of data collection. We hope that this
work would provide meaningful guidance and inspiration for
the development of future IoT networks, especially the air-
ground integrated IoT network.

REFERENCES

[1] K. Rose, S. Eldridge, and L. Chapin, “The Internet of Things: An
Overview,” The Internet Society (ISOC), pp. 1–50, 2015.

[2] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart community:
An internet of things application,” IEEE Communications Magazine,
vol. 49, no. 11, pp. 68–75, November 2011.

[3] L. D. Xu, W. He, and S. Li, “Internet of Things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, Nov 2014.

[4] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia,
“An overview of internet of things (IoT) and data analytics in agriculture:
Benefits and challenges,” IEEE Internet of Things Journal, vol. 5, no. 5,
pp. 3758–3773, Oct 2018.

[5] I. Lee and K. Lee, “The Internet of Things (IoT): Applications, invest-
ments, and challenges for enterprises,” Business Horizons, vol. 58, no. 4,
pp. 431 – 440, 2015.

[6] X. Hu, L. Yang, and W. Xiong, “A novel wireless sensor network frame
for urban transportation,” IEEE Internet of Things Journal, vol. 2, no. 6,
pp. 586–595, Dec 2015.

[7] M. T. Lazarescu, “Design of a WSN platform for long-term environ-
mental monitoring for IoT applications,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 3, no. 1, pp. 45–54,
March 2013.

[8] 3GPP TS 36.331, “Evolved Universal Terrestrial Radio Access (E-
UTRA); Resource Control (RRC) Protocol Specification (Release 13),”
2016.

[9] 3GPP RP-171428, “Further NB-IoT enhancements,” 2017. [Online].
Available: http://www.3gpp.org

[10] 3GPP TR 23.724, “Study on Cellular Internet of Things (IoT) support
and evolution for the 5G System,” v16.0.0, Dec. 2018.

[11] Yunxia Chen and Qing Zhao, “On the lifetime of wireless sensor
networks,” IEEE Communications Letters, vol. 9, no. 11, pp. 976–978,
Nov 2005.

[12] C. V. Phan, Y. Park, H. H. Choi, J. Cho, and J. G. Kim, “An energy-
efficient transmission strategy for wireless sensor networks,” IEEE
Transactions on Consumer Electronics, vol. 56, no. 2, pp. 597–605,
May 2010.

[13] J. Rezazadeh, K. Sandrasegaran, and X. Kong, “A location-based smart
shopping system with IoT technology,” in 2018 IEEE 4th World Forum
on Internet of Things (WF-IoT), Feb 2018, pp. 748–753.

[14] X. Lin, J. Bergman, F. Gunnarsson, O. Liberg, S. M. Razavi, H. S.
Razaghi, H. Rydn, and Y. Sui, “Positioning for the Internet of Things:
A 3GPP perspective,” IEEE Communications Magazine, vol. 55, no. 12,
pp. 179–185, Dec 2017.

[15] P. Misra and P. Enge, Global Positioning System - signals, measurements
and performance second edition. Massachusetts: Ganga-Jamuna Press,
2006.

[16] A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, and
H. Wymeersch, “5G position and orientation estimation through mil-
limeter wave mimo,” in 2015 IEEE Globecom Workshops (GC Wkshps),
Dec 2015, pp. 1–6.

[17] K. Radnosrati, G. Hendeby, C. Fritsche, F. Gunnarsson, and F. Gustafs-
son, “Performance of OTDOA positioning in narrowband IoT systems,”
in 2017 IEEE 28th Annual International Symposium on Personal, Indoor,
and Mobile Radio Communications (PIMRC), Oct 2017, pp. 1–7.

[18] A. Dammann, R. Raulefs, and S. Zhang, “On prospects of positioning
in 5G,” in 2015 IEEE International Conference on Communication
Workshop (ICCW), June 2015, pp. 1207–1213.

[19] A. Hoglund, X. Lin, O. Liberg, A. Behravan, E. A. Yavuz, M. Van Der
Zee, Y. Sui, T. Tirronen, A. Ratilainen, and D. Eriksson, “Overview of
3GPP release 14 enhanced NB-IoT,” IEEE Network, vol. 31, no. 6, pp.
16–22, November 2017.

[20] J. Khalife, K. Shamaei, S. Bhattacharya, and Z. Kassas, “Centimeter-
accurate UAV navigation with cellular signals,” in Proceedings of ION
GNSS Conference, 2018.

[21] S. Dhingra, R. B. Madda, A. H. Gandomi, R. Patan, and M. Danesh-
mand, “Internet of things mobile-air pollution monitoring system (iot-
mobair),” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5577–5584,
June 2019.

[22] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: opportunities and challenges,” IEEE Com-
munications Magazine, vol. 54, no. 5, pp. 36–42, May 2016.

[23] S. Zhang, Y. Zeng, and R. Zhang, “Cellular-enabled uav communication:
A connectivity-constrained trajectory optimization perspective,” IEEE
Transactions on Communications, vol. 67, no. 3, pp. 2580–2604, March
2019.

[24] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-
ground path loss for low altitude platforms in urban environments,” in
2014 IEEE Global Communications Conference, Dec 2014, pp. 2898–
2904.

[25] W. Khawaja, I. Guvenc, D. W. Matolak, U. Fiebig, and N. Schnecken-
burger, “A survey of air-to-ground propagation channel modeling for
unmanned aerial vehicles,” IEEE Communications Surveys Tutorials,
vol. 21, no. 3, pp. 2361–2391, thirdquarter 2019.

[26] X. Ma, R. Kacimi, and R. Dhaou, “Fairness-aware UAV-assisted data
collection in mobile wireless sensor networks,” in 2016 International
Wireless Communications and Mobile Computing Conference (IWCMC),
Sep. 2016, pp. 995–1001.

[27] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile internet
of things: Can uavs provide an energy-efficient mobile architecture?”



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

in 2016 IEEE Global Communications Conference (GLOBECOM), Dec
2016, pp. 1–6.

[28] D. Yang, Q. Wu, Y. Zeng, and R. Zhang, “Energy tradeoff in ground-
to-uav communication via trajectory design,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 7, pp. 6721–6726, July 2018.

[29] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned
aerial vehicles (uavs) for energy-efficient internet of things communica-
tions,” IEEE Transactions on Wireless Communications, vol. 16, no. 11,
pp. 7574–7589, Nov 2017.

[30] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in
uav enabled wireless sensor network,” IEEE Wireless Communications
Letters, vol. 7, no. 3, pp. 328–331, June 2018.

[31] I. Bor-Yaliniz and H. Yanikomeroglu, “The new frontier in RAN
heterogeneity: Multi-tier drone-cells,” IEEE Communications Magazine,
vol. 54, no. 11, pp. 48–55, November 2016.

[32] S. Sekander, H. Tabassum, and E. Hossain, “Multi-tier drone architecture
for 5G/B5G cellular networks: Challenges, trends, and prospects,” IEEE
Communications Magazine, vol. 56, no. 3, pp. 96–103, March 2018.

[33] J. Lyu, Y. Zeng, and R. Zhang, “UAV-aided offloading for cellular
hotspot,” IEEE Transactions on Wireless Communications, vol. 17, no. 6,
pp. 3988–4001, June 2018.

[34] W. Stempfhuber and M. Buchholz, “A precise, low-cost RTK GNSS
system for UAV applications,” in roc. of Unmanned Aerial Vehicle in
Geomatics, ISPRS, 2011, pp. 289–293.

[35] Z. Liu, Z. Li, B. Liu, X. Fu, I. Raptis, and K. Ren, “Rise of mini-
drones: Applications and issues,” in Proceedings of the 2015 Workshop
on Privacy-Aware Mobile Computing, ser. PAMCO ’15. New York,
NY, USA: ACM, 2015, pp. 7–12.

[36] H. Sallouha, M. M. Azari, A. Chiumento, and S. Pollin, “Aerial
anchors positioning for reliable RSS-based outdoor localization in urban
environments,” IEEE Wireless Communications Letters, vol. 7, no. 3, pp.
376–379, June 2018.

[37] H. Sallouha, M. M. Azari, and S. Pollin, “Energy-constrained UAV
trajectory design for ground node localization,” in 2018 IEEE Global
Communications Conference (GLOBECOM), Dec 2018, pp. 1–7.

[38] Z. Liu, Y. Chen, B. Liu, C. Cao, and X. Fu, “HAWK: An unmanned
mini-helicopter-based aerial wireless kit for localization,” IEEE Trans-
actions on Mobile Computing, vol. 13, no. 2, pp. 287–298, Feb 2014.

[39] 3GPP TR 38.901, “Study on channel model for frequencies from 0.5 to
100 GHz,” v15.0.0, Jun. 2018.

[40] 3GPP TR 45.820, “Cellular system support for ultra-low complexity and
low throughput Internet of Things (CIoT),” v13.1.0, Nov. 2015.

[41] B. Li, Z. Fei, and Y. Zhang, “UAV communications for 5G and beyond:
Recent advances and future trends,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2241–2263, April 2019.

[42] D. Oh and J. Lee, “Robust super-resolution TOA estimation against
Doppler shift for vehicle tracking,” IEEE Communications Letters,
vol. 18, no. 5, pp. 745–748, May 2014.

[43] Z. Hou, Y. Zhou, L. Tian, J. Shi, Y. Li, and B. Vucetic, “Radio
environment map-aided Doppler shift estimation in LTE railway,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 5, pp. 4462–4467,
May 2017.

[44] J. A. del Peral-Rosado, J. A. López-Salcedo, G. Seco-Granados,
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