365 research outputs found

    Improving Mobile Video Streaming with Mobility Prediction and Prefetching in Integrated Cellular-WiFi Networks

    Full text link
    We present and evaluate a procedure that utilizes mobility and throughput prediction to prefetch video streaming data in integrated cellular and WiFi networks. The effective integration of such heterogeneous wireless technologies will be significant for supporting high performance and energy efficient video streaming in ubiquitous networking environments. Our evaluation is based on trace-driven simulation considering empirical measurements and shows how various system parameters influence the performance, in terms of the number of paused video frames and the energy consumption; these parameters include the number of video streams, the mobile, WiFi, and ADSL backhaul throughput, and the number of WiFi hotspots. Also, we assess the procedure's robustness to time and throughput variability. Finally, we present our initial prototype that implements the proposed approach.Comment: 7 pages, 15 figure

    Live Prefetching for Mobile Computation Offloading

    Get PDF
    The conventional designs of mobile computation offloading fetch user-specific data to the cloud prior to computing, called offline prefetching. However, this approach can potentially result in excessive fetching of large volumes of data and cause heavy loads on radio-access networks. To solve this problem, the novel technique of live prefetching is proposed in this paper that seamlessly integrates the task-level computation prediction and prefetching within the cloud-computing process of a large program with numerous tasks. The technique avoids excessive fetching but retains the feature of leveraging prediction to reduce the program runtime and mobile transmission energy. By modeling the tasks in an offloaded program as a stochastic sequence, stochastic optimization is applied to design fetching policies to minimize mobile energy consumption under a deadline constraint. The policies enable real-time control of the prefetched-data sizes of candidates for future tasks. For slow fading, the optimal policy is derived and shown to have a threshold-based structure, selecting candidate tasks for prefetching and controlling their prefetched data based on their likelihoods. The result is extended to design close-to-optimal prefetching policies to fast fading channels. Compared with fetching without prediction, live prefetching is shown theoretically to always achieve reduction on mobile energy consumption.Comment: To appear in IEEE Trans. on Wireless Communicatio

    From Traditional Adaptive Data Caching to Adaptive Context Caching: A Survey

    Full text link
    Context data is in demand more than ever with the rapid increase in the development of many context-aware Internet of Things applications. Research in context and context-awareness is being conducted to broaden its applicability in light of many practical and technical challenges. One of the challenges is improving performance when responding to large number of context queries. Context Management Platforms that infer and deliver context to applications measure this problem using Quality of Service (QoS) parameters. Although caching is a proven way to improve QoS, transiency of context and features such as variability, heterogeneity of context queries pose an additional real-time cost management problem. This paper presents a critical survey of state-of-the-art in adaptive data caching with the objective of developing a body of knowledge in cost- and performance-efficient adaptive caching strategies. We comprehensively survey a large number of research publications and evaluate, compare, and contrast different techniques, policies, approaches, and schemes in adaptive caching. Our critical analysis is motivated by the focus on adaptively caching context as a core research problem. A formal definition for adaptive context caching is then proposed, followed by identified features and requirements of a well-designed, objective optimal adaptive context caching strategy.Comment: This paper is currently under review with ACM Computing Surveys Journal at this time of publishing in arxiv.or

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    Space-Efficient Predictive Block Management

    Get PDF
    With growing disk and storage capacities, the amount of required metadata for tracking all blocks in a system becomes a daunting task by itself. In previous work, we have demonstrated a system software effort in the area of predictive data grouping for reducing power and latency on hard disks. The structures used, very similar to prior efforts in prefetching and prefetch caching, track access successor information at the block level, keeping a fixed number of immediate successors per block. While providing powerful predictive expansion capabilities and being more space efficient in the amount of required metadata than many previous strategies, there remains a growing concern of how much data is actually required. In this paper, we present a novel method of storing equivalent information, SESH, a Space Efficient Storage of Heredity. This method utilizes the high amount of block-level predictability observed in a number of workload trace sets to reduce the overall metadata storage by up to 99% without any loss of information. As a result, we are able to provide a predictive tool that is adaptive, accurate, and robust in the face of workload noise, for a tiny fraction of the metadata cost previously anticipated; in some cases, reducing the required size from 12 gigabytes to less than 150 megabytes

    EFFECTIVE GROUPING FOR ENERGY AND PERFORMANCE: CONSTRUCTION OF ADAPTIVE, SUSTAINABLE, AND MAINTAINABLE DATA STORAGE

    Get PDF
    The performance gap between processors and storage systems has been increasingly critical overthe years. Yet the performance disparity remains, and further, storage energy consumption israpidly becoming a new critical problem. While smarter caching and predictive techniques domuch to alleviate this disparity, the problem persists, and data storage remains a growing contributorto latency and energy consumption.Attempts have been made at data layout maintenance, or intelligent physical placement ofdata, yet in practice, basic heuristics remain predominant. Problems that early studies soughtto solve via layout strategies were proven to be NP-Hard, and data layout maintenance todayremains more art than science. With unknown potential and a domain inherently full of uncertainty,layout maintenance persists as an area largely untapped by modern systems. But uncertainty inworkloads does not imply randomness; access patterns have exhibited repeatable, stable behavior.Predictive information can be gathered, analyzed, and exploited to improve data layouts. Ourgoal is a dynamic, robust, sustainable predictive engine, aimed at improving existing layouts byreplicating data at the storage device level.We present a comprehensive discussion of the design and construction of such a predictive engine,including workload evaluation, where we present and evaluate classical workloads as well asour own highly detailed traces collected over an extended period. We demonstrate significant gainsthrough an initial static grouping mechanism, and compare against an optimal grouping method ofour own construction, and further show significant improvement over competing techniques. We also explore and illustrate the challenges faced when moving from static to dynamic (i.e. online)grouping, and provide motivation and solutions for addressing these challenges. These challengesinclude metadata storage, appropriate predictive collocation, online performance, and physicalplacement. We reduced the metadata needed by several orders of magnitude, reducing the requiredvolume from more than 14% of total storage down to less than 12%. We also demonstrate how ourcollocation strategies outperform competing techniques. Finally, we present our complete modeland evaluate a prototype implementation against real hardware. This model was demonstrated tobe capable of reducing device-level accesses by up to 65%
    corecore