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Abstract

With growing disk and storage capacities, the
amount of required metadata for tracking all blocks in
a system becomes a daunting task by itself. In previous
work, we have demonstrated a system software effort
in the area of predictive data grouping for reduc-
ing power and latency on hard disks. The structures
used, very similar to prior efforts in prefetching and
prefetch caching, track access successor information
at the block level, keeping a fixed number of imme-
diate successors per block. While providing powerful
predictive expansion capabilities and being more space
efficient in the amount of required metadata than many
previous strategies, there remains a growing concern
of how much data is actually required. In this paper,
we present a novel method of storing equivalent infor-
mation, SESH, a Space Efficient Storage of Heredity.
This method utilizes the high amount of block-level
predictability observed in a number of workload trace
sets to reduce the overall metadata storage by up to
99% without any loss of information. As a result, we
are able to provide a predictive tool that is adaptive,
accurate, and robust in the face of workload noise,
for a tiny fraction of the metadata cost previously
anticipated; in some cases, reducing the required size
from 12 gigabytes to less than 150 megabytes.

I. Introduction

Hard disk and storage system performance concerns,
both in terms of latency access and power consump-
tion, continue to gain importance for modern computer
systems. Both hardware and software efforts continue
to try to reduce latencies and response times while
demanding greener, more efficient use of resources.
Many system software projects involve tracking and

profiling workloads in order to predict and identify
access patterns, both at the file and at the block level.
Such techniques include data placement, both static as
well as dynamic, caching and prefetching, as well as
data replication and shuffling. But with growing disk
and storage capacities, the volume required by metadata
for tracking all blocks in a system becomes a daunting
task in its own right. Further, while hardware advance-
ments provide significantly larger storage systems, the
ratio of used storage has been shown to remain stable,
even with these larger disks [1].

In previous work, we have demonstrated a system
software effort in the area of predictive data grouping
for reducing power and latency on hard disks [2].
The structures used, very similar to prior efforts in
prefetching and prefetch caching, track access succes-
sor information at the block level, keeping a fixed
number of immediate successors per block. While pro-
viding powerful predictive expansion capabilities and
being more space efficient in the amount of required
metadata than many previous strategies, there remains a
growing concern of how much data is actually required.
In this paper, we present a novel method of storing
equivalent information,SESH, aSpace Efficient Storage
of Heredity. This method utilizes the high amount
of block-level predictability observed in a number of
workload trace sets to reduce the overall metadata
storage by up to 99% without any loss of information.
As a result, we are able to provide a predictive tool that
is adaptive, accurate, and robust in the face of workload
noise, for a tiny fraction of the metadata cost previously
anticipated; in some cases, reducing the required size
from 12 gigabytes to less than 150 megabytes.

II. Motivation

Optimizing storage system performance in the face
of varying workloads requires the accurate tracking and
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exploitation of patterns in data access behavior. Such
information is useful for a broad range of applications,
including caching, placement, workload shaping, data
collocation and migration. Unfortunately, tracking ac-
cess behavior and predicting future access behavior can
result in large metadata demands. This is true when
dealing with data at the granularity of files and objects,
but quickly becomes unmanageable when attempting
to monitor block-level access behavior in large storage
systems. An explosion in metadata volume is doubly
problematic when we consider that retrieving and up-
dating such metadata can suddenly become an addi-
tional burden upon the storage subsystem. On the other
hand, arbitrarily limiting the volume of metadata being
maintained will only allow for optimizations to data
within a current hotspot, the currently active working
set, which is arguably less in need of pattern discovery
and placement optimization (due to the effectiveness
of even basic caching schemes on such subsets). This
inevitably precludes the opportunity to discover longer-
term patterns across less intensely active regions.

To improve the accuracy of placement and collo-
cation decisions, and improve the overall performance
of predictive analysis of data access patterns, we wish
to maintain as much metadata as possible, but only
if it is useful. Our previous work on predictive data
grouping [2] demonstrates one such strategy that stores
a number of direct block successors for each data
access. Our strategy shows promise in the area of
data grouping, and is similar to previously explored
strategies in prefetching and prefetch-caching strategies
adopted by Kroegeret al at the file level [3], [4]. We
present a study of how it is feasible to reduce the meta-
data requirements of our strategy in the face of block-
level I/O workloads. The structures used in our work
are reminiscent of the limited-length queue of access
successors in theRecent Popularitystrategy adopted
in [5]. Such single-successor strategies are often chosen
for their efficiency benefits over multicontext modeling,
yet still require huge amounts of storage. Minimally, we
would need to track the root block’s id, which could
simply be a translated location within an array, and
the queue of accesses, each of which is a block id.
Thus, the total storage space would be the number of
successors stored,s, times the total number of blocks,
t. For modern systems, this metadata volume is too
large. For a 4 TB disk array, assuming a block size
of 4 KB, this would mean storing information for
1 billion blocks. Assuming a 64-bit address, this system
would require 8 GB of spacejust for storing a single
successor. We address the issue of metadata volume

requirements inSESHby observing that most blocks
share two properties...

1) They only have a single successor.
2) The only successor they have is the next sequen-

tial block.

Using this information, we are able to drastically reduce
the total size needed for our predictive information
while incurring little overhead. Further, our strategy
scales better in the number of successors tracked.

The remainder of this paper is organized as follows.
Section III discusses prior art related toSESH. Sec-
tion IV briefly describes the structures used and details
our experiments. Results are presented in Section V and
we conclude with Section VI.

III. Background and Related Work

A study on graph-based access predictors was first
presented by Griffioen and Appleton [6]. These pre-
dictors were used to provide sufficient lead-time to
render the prediction useful for prefetching as well
as managing access patterns spanning multiple ap-
plications. The use of the last successor model for
file prediction, and more elaborate techniques based
on pattern matching, were first presented by Lei and
Duchamp [7]. Similar work has been done researching a
last successor predictor, finite multi-order context mod-
eling (FMOC) models from branch prediction methods,
and a partitioned context model (PCM) [3]. While
a “last successor” strategy predicted with surprising
accuracy, there tends to be enough noise in an access
stream to confuse it [8]. A more stable predictor, Noah,
is presented that removes this noise by predicting only
if a stability condition is satisfied.

Previous work has also shown that comparing
two different predictors is non-trivial. To aid in this
dilemma, three measures of prediction accuracy were
developed; general accuracy and specific accuracy [5]
and effective-miss-ratio [9]. General and specific ac-
curacy were used to compare Noah with last successor
and first successor [5]. It is noted that Noah suffers from
non-decreasing general accuracy for high stability pa-
rameters. A new predictor,Recent Popularity, is shown
to solve this problem. It is also noted thatRecent Pop-
ularity adapts quicker with changing workloads than
Noah. To benefit from this robustness and adaptability,
our techniques use variants onRecent Popularityfor
gathering data for prediction.

Similar work on the aggregating cache differs from
related work on predictive prefetching systems, but
uses analogous structures to Griffioen and Appleton’s



graph-based scheme [6]. Kroeger and Long [3] com-
pared the predictive performance of the last successor
model, Griffioen and Appleton’s graph-based strategy,
and new techniques based on context modeling and
data compression [10]. The earliest proposed use of
data compression strategies to predict disk accesses
was presented by Vitter and Krishnan [11], [4]. Shriver
et al. [12] has provided analytical reasoning for the
benefits of read-ahead buffering and prefetching. Other
recent work on ASP [13] presents a study of a strip
prefetching scheme for striped disk arrays. The au-
thors show that combining separate management of
prefetched and regular cache lines with a culling
scheme using differential feedback similar to the adap-
tive marginal utility used in SARC [14]. Such prefetch-
ing of data is not without costs, many of which are
addressed in ASP. Any prefetching strategy must have
a reasonable lead time in order to retrieve data before it
is actually requested. Additionally, any benefit from this
prefetching, like spin-down techniques, lie directly on
the data path. Our strategy enables the decoupling of the
strategy from the data path, allowing us to shut down
any regrouping while still benefitting from previous
efforts to properly cluster data.

Recent work has shown advances toward utilizing
device-level knowledge of physical data layout. Predic-
tion for both caching purposes and prefetching purposes
have begun emphasizing spatial locality as having a
higher utility than a random access; that is, a block
likely to be accessed next that happens to be close
to the current location of the disk head has much
higher usefulness than a similarly likely block that
exists far away. DULO [15] presents a buffer cache
management scheme that exploits both temporal and
spatial locality, while DiskSeen [16] presents work
utilizing similar table structures for use of predictive
prefetching. DiskSeen fetches at the device level, and
is designed to be synergistic with file-level prefetching
strategies. More recent work on TaP [17] describes
using a separate data structure to store previous ad-
dresses in order to identify sequential data streams
without having to use precious cache space to do so.
Our work seeks to increase the likelihood of spatially
close blocks, and would be highly beneficial to such
location- and stream-aware strategies.

Traditional research to improve performance of hard
disks by modifying I/O workloads include scheduling
strategies such as SSTF, SCAN [18], C-SCAN [19],
and LOOK [20]. More recently, approaches for decreas-
ing the growing impact of rotational delay have been
presented [21], [22], [23], [24], [25]. These efforts are

considered orthogonal to our current and previous work
on prediction and data regrouping.

The use of prediction as a means of workload shap-
ing to reduce power consumption has been proposed
by Flinn and Satyanaryanan [26] and also Lorch and
Smith [27]. These suggestions focused on the ability
of prefetching data to allow for increased idle-time
periods, which in turn would hopefully allow greater
opportunities for disk spin-downs. Similarly, recent
work by Weisselet al. [28], and Papathanasiou and
Scott [29], attempts to actively modify the workload
and increase workload burstiness to increase opportu-
nities for disk spin-down. Predictive methods such as
these are expected to benefit from metadata such as that
used by this project.

The desire to place related data together on disk is
traditionally accepted as a wise storage-system goal,
and recent work indicates that its uses continue to
present themselves [30], [16], [15]. For example, work
by Kandemir et al. [30] focuses on utilizing disk
layout knowledge at compiler time for data intensive
applications, notably scientific applications.

Access patterns can be used to rearrange tracks on
the disk [31], a problem known to be NP-Hard [32], to
improve on the organ-piping method [33], detailed and
discussed in depth by Wong [34]. Such patterns can also
use be used to identify which files to move to tertiary
storage [35]. Other forms of disk management include
storing data that does not cross track boundaries [36]
as well as how to extract that information and use it
as stripe unit boundaries [37], storing inodes by em-
bedding them in their directory, and grouping together
small files on disk to be read as one [38]. It has been
demonstrated that it is possible to separate inodes from
data over a distributed system [39].

Early data placement and predictive grouping studies
attempted to use frequency of access as an estimated
likelihood in order to optimally place high-demand
data. The optimum arrangement of files on disk was
originally a manual task, placing popular files near the
center of the disk cylinder. The necessary automation
of this process has been addressed by Staelin and
Garcia-Molina [40], [41], [42], whose work dealt with
models that provided optimal placement of files where
accesses were independent. However, data accesses
often involve dynamic relationships, where access de-
pendencies change over time. Berkeley’s FFS [43],
[44] includes attempts to cluster related data and meta-
data into cylinder tracks on a disk. However, these
approaches typically require disjoint sets as groups.
Our approach makes no such constraints, allowing



replication between groups formed, although not within
them. Similar replication was performed by Akyürek
and Salem in 1995, where popular “hot” blocks were
copied to a common disk area to improve disk perfor-
mance [45]. However, this study was based only on the
global popularity, or percentage of access, rather than
inter-file relationships. Dynamic groups [46] attempt
to exploit inter-file relationships, but required explicit
application hints to determine group membership. Ex-
amples of efforts in automated grouping include C-
FFS [38] (collocating FFS), which bases grouping on a
directory-membership heuristic, and Hummingbird [47]
which utilizes the underlying structure of web files. In
contrast, our model does not require any knowledge of
underlying data structure, as our grouping mechanism
can establish relationships based on observed access
behavior, as opposed to inference from file location or
content.

IV. Experimental Setup

Our goal is to develop space-efficient structures for
tracking metadata, specifically for predictive informa-
tion. Ideally, these structures would incur little to no
overhead while maintaining undiminished usefulness.
Further, we seek to define, in a general case, what
the expected benefits of these structures would be.
Finally, we endeavor to verify our expectations by
testing working implementations against realistic work-
loads in order to determine how effective our data
pattern exploitation techniques would be at reducing
metadata volumes in real systems. This final goal can
be met by testing our strategies on workload trace sets
gathered from real systems, rather than drawing from
a distribution or synthetic function.

This section describes our strategy by discussing the
structures we have developed as well as an estimated re-
duction formula. We then detail the different trace sets
used to evaluate our current implementations. Finally,
we explain our metadata volume calculations.

A. Data Structures

Several new data structures were designed for this
project. TheOptimal Expansion Tree, or OpExTree,
is the base structure used in our previous efforts for
tracking metadata for predictive data grouping. The
Dynamic Bitmapis a functional equivalent to a normal
bitmap, but with the advantage of being dynamically
allocated and able to spontaneously grow or shrink.
The Dynamic Regionis used to map a fixed number

of bits to some id. Finally, theSESHstructure is the
combination of the above structures used to decrease
the size of the necessary metadata required. Following
is a brief discussion of each structure.

1) Optimal Expansion Tree:Our standard metadata
storage structure consists of a root id, or the element’s
block number, and an array of immediate successors,
or children. The structure is based on theRecent Popu-
larity strategy from earlier work on predictive caching
and prefetching [5], and was chosen for its robustness
to signal noise and speed of adaptation to changing
workloads.

Children are in the form of block numbers that
occurred directly after the root id. While our structure
allows this array to be unbounded, we limit the number
of children for this project. Additionally, we track how
often each child occurred.

Upon seeing a new event’s successor, we add it to
the tree by

1) Updating the appropriate count, or
2) Adding a new child to the successor array and

setting the appropriate count to 1.

In the case of a bounded structure, once we reach the
maximum number of children to track, we update the
structure by choosing the lowest occurring successor
and removing it from the structure. The new successor
is then placed into the array and it’s count is set to 1.

An alternate structure design replaces the successor
array with a queue of children, in order of occurrence.
Upon reaching the maximum capacity, a dequeue is
performed before adding the new event. In this case,
the counts are calculated by iterating through the queue
on-the-fly. While this method will typically adjust to
workload shifts easier, in practice we find the event
counting to be a severe bottleneck.

A third alternate structure contains both a queue
as well as an array and counts. The queue is used
in the same way as above, but dequeued items have
their counts deducted, and are removed once their
count reaches zero. In practice, we have found that our
standard use of only an array very closely approximates
this method, and the queue was removed from the
standard version.

2) Dynamic Bitmap:TheDynamic Bitmapstructure
consists of a count of total number of entries and a hash
table of nodes. Each node consists of a simple integer
array that represents a region of the functional bitmap.
Each set, unset, or check of any particular location is
hashed and the appropriate node, if existent, is fetched.
On a set, the appropriate integer within the node’s array
is adjusted to update the map. If the node does not exist,
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it is created. Similarly, on an unset, the appropriate
integer is adjusted. If the unset results in an empty
node, equivalent to an array of all zeroes, the node
is destroyed. On a check, if the node does not exist,
zero is returned. Otherwise, the appropriate bit within
the existent array is returned.

3) Dynamic Region:TheDynamic Regionstructure
is very similar to a bitmap. Instead of each bit being
used to represent some property of some event, a
number of bits are used. This is achieved by utilizing a
Dynamic Bitmap, and for each event id, we increment
some region on the map. For our purposes, we required
only that each region denote a count, or integer. There-
fore, the only functions we needed were increment,
decrement, remove, and check.

4) SESH, or Space-Efficient Storage of Heredity:
During our work on prediction and data regrouping, we
noted that many blocks have only a single successor.
Most commonly, this successor happens to be the next
block. TheSESHdata structure utilizes this observation
by removing suchOpExTreesfrom some successor
table, typically a hash table, and utilizing aDynamic
Regionto represent the tree. Some region being non-
zero within theDynamic Regionstructure represents a
tree having only a single successor, which happens to
be the block directly after the root block in question.

We call the successors stored within the regionheir
apparents. These heir apparents occur the vast majority
of the time, and each reduces the amount of metadata
required from (minimally) several bytes to only a few
bits (on average). As a realistic example, tracking eight
successors (64-bit addresses, or 8 bytes) on a 256 GB
hard drive with a block size of 512 bytes would require
32 GB of metadata.

8∗8∗ (256GB/512)= 32GB
However, each heir apparent would only require, on
average, 3 bits. Given below is a estimated calculation
for the reduced size, in bits,r, based on the number
of blocks,b, the percentage of blocks that only contain
heir apparents,p, and the number of successors tracked
for each block,n.

r = b∗ (log(n)∗ p+(1− p)∗ (64+(64∗n)));
Note that this assumes 64-bit block numbers and
ignores internal fragmentation within ourDynamic
Bitmapstructure. One note of interest presented by this
formula is that whenp is very high, the resulting size
r becomes very scalable with respect to the number of
successors,n. Since most blocks fit into theDynamic
Region, increasingn results in a log(n) increase in
the space necessary to store it. The larger structures
increase linear ton. Even though these structures are



expected to represent only a small percentage of all
items tracked, theyare expected to dominate the space
used fairly quickly. Figure 1 show a 3d plot of a
256 GB hard drive and the metadata required for
storing information for all blocks, both before and after
reduction, against the number of children tracked and
the percentage of blocks that contain heir apparents.

B. Traces

For this project, we used four different workload
sets. Themozart set consists of a workstation trace
gathered using the DFSTrace system [48]. These traces
were converted into equivalent block-level traces with
block sizes of 512, 4096 (4K), and 8192 (8K) bytes.
There were four different original trace sizes; day
length, week length, month length, and year length.
This set has the appeal of allowing the analysis of our
strategies over different definitive time periods as well
as allowing us to convert easily to different block sizes.

The second set,hplajw, is a block-level workstation
trace [49]. This set has the advantage of natively begin
a block-level trace, and therefore does not require
conversion. However, there is only a single trace length,
and lacks any information of original file-system level
access information, and therefore cannot be converted
to traces of differing block sizes.

The third set, ranin, is a trace set we gathered
using the standard fsusage command found on Mac
OS X. The traces were gathered from November to
December, 2007 on a Mac PowerBook G4 running
Mac OS X 10.4. The workload represents a typical
graduate student workstation, and was used for internet
browsing, file editing, code compiling, and running and
testing experiments (predominantly C++ programs).
While there were a few trace interruptions due to
rebooting, including one major software update, the
inaccuracies introduced would be negligible. Addition-
ally, the software update had no impact on the fsusage
command itself, and any system-level workload shifts
due to this update would represent realistic workload
shifts experienced by users updating their operating
system. Cache activity was gathered, but for these
traces they were ignored; only device-level requests
were used. These requests were in the form of read
and write data and metadata as well as page ins and
outs.

The final set,iTunes, is a trace set gathered using the
same fsusage command. This set was gathered on two
different Mac mini G4 workstations, each with 512 MB
of memory and running Mac OS X 10.3.9. An iTunes
playlist of 148 songs, with a runtime of approximately

14.8 hours, was run on each machine. Traces were
gathered from August 31, 2008 to March 23, 2009,
resulting in play counts over 300. All disk activity
due to iTunes was isolated and recorded. One trace
gathered information on a sequential playlist, while the
other playlist was shuffled. These traces represent one
extreme of predictability, an estimated upper bound on
how predictable a realistic workload can be.

Similar to themozart traces, ourranin and iTunes
workloads include information about how large an
access was requested, and therefore could easily be
converted to equivalent block-level workloads. Perhaps
the most interesting block size is 512, which is the
natively preferred block size of the hard drives, both
for the PowerBook and the Mac minis. However, we
included runs on 4K and 8K block sizes for consistency.

Since the fsusage command collects information on
all devices, these traces do require a bit of attention to
what raw device is being accessed. Some devices, such
as /dev/NOTFOUND, were pruned. All devices that
seem viable were included in the test run and mapped
to a single device. This mapping was done by giving
a 200 GB range to each device. Table I summarizes
the devices found in theranin traces and how often
each occurred, as well as noting which of these were
ignored.

TABLE I. List of all devices found in the
ranin trace set.

Device Occurrence Count Included?
/dev/disk0s3 3746392 Yes
/dev/NOTFOUND 571206 No
/dev/disk2s1 185933 Yes
/dev/disk2 73166 Yes
/dev/disk2s0 10621 Yes
/dev/disk1s1 954 Yes

All of these traces consist of data gathered from
actual systems, and as such contain real-world pre-
dictability due to user, program, and system behavior,
rather than being drawn from a distribution or synthetic
function.

C. Calculating Metadata Requirements

Each workload was split into ten sequential seg-
ments of approximately equal access counts. The trace
was then run through our simulator. Each run consisted
of the first segment, followed by running the first and
second segments together, and so on until the entire
trace was run. At the end of each segment run, the total
metadata space used was recorded. Verification results



on each individual segment were also run, but for sake
of brevity are not reported.

Each recorded metadata requirement consisted of the
calculation of total space used by ourSESHstructure.
This includes any and all extra metadata we used for
sake of statistics gathering, though these extra object
fields are negligible. In calculating these metadata re-
quirements, we count all nodes of allDynamic Bitmaps
used in ourDynamic Regions, rather than estimating a
number of bits per heir apparent as in Figure 1. In
order to calculate the projected size of metadata using
a hash table ofOpExTrees, we multiply the number of
heir apparents by the total size of the same number of
single-child OpExTreesand add the appropriate hash
table metadata needed to track the extra trees.

V. Results

Our results show that almost all traces of non-trivial
size show a drastic decrease in necessary metadata. For
most workloads, we can reduce this storage space to
only a small percentage of the original space, typically
between 1 and 3 percent for smaller block sizes.
Table II summarizes the sizes recorded at the very end
of the ranin workloads, while Table III summarizes
the reductions and savings. Figure 2(a) illustrates the
difference between the projected metadata requirements
and the reduced space on theranin traces with 512 byte
blocks, while Figure 2(b) shows the reduced size in
terms of projected volume’s percentage. Figures 3(a)
and 3(b) show the respective results for themozart
traces, again with 512 byte blocks. Thehplajw trace
showed results similar to these 512 byte block traces,
with reductions falling between 91% and 97%. The
interesting difference is that thehplajw trace does better
early on, then quickly falls to 91% reduction before flat-
tening out. TheiTunestraces showed reductions similar
to the ranin workloads, exceeding 98% reductions for
small (512 byte) blocks.

As expected, larger traces show higher consistency
in the necessary data required for storage. Smaller data
sets would not adequately capture the larger picture,
and would have new blocks introduced quite frequently,
while larger sets would add only the occasional new
block.

An interesting result to note is that total required
storage space, after reductions, is reasonably consistent
across block sizes, varying only by about 20%, while
the total number of blocks that need tracked increase
14-fold. For instance, the fullranin trace, at roughly
a month in length, requires about 150 to 189 MB, de-
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Fig. 2. Comparison of total projected meta-
data storage versus reduced storage for all
ranin traces with 512 byte blocks.

pending on block size, while the total number of blocks
jumps from about 12 million (for 8 KB blocks) to 119
million (for 512 byte blocks). It is also interesting to
note that, forreducedsizes, it is the middle block size
of 4096 that requires the most space. As expected, the
smallest block size has a much higher reduction rate, as
it would exhibit a far greater amount of predictability,
while the largest block size has far fewer blocks to
track.

VI. Conclusions

In this paper, we have presented a simple yet novel
strategy for tracking first-successor metadata informa-
tion at the block level. We have provided an estimating
function for showing the expected savings, based on
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Fig. 3. Comparison of total projected meta-
data storage versus reduced storage for
various mozarttraces with 512 byte blocks.

the number of successors that are tracked and the
percentage of blocks that have the next sequential
block as their only successor, called heir apparents.
Estimates show savings of around 90 to 99% over
total space usage from prior strategies for heir ap-
parent percentages exceeding 90%. This space usage,
according to our formula, also scales reasonably well,
growing linearly in the number of successors tracked.
These estimates were then verified with simulations
tracking this successor information and calculating how
much space is used by our implemented structures,
both before and after our reduction strategy. Multiple
workloads with multiple block sizes were run, each
showing large reductions, verifying that heir apparent
percentages are quite commonly very high. We have
shown that, with an overhead of only a few hash table
lookups, we are able to reduce the required metadata

TABLE II. Comparison of total space of all
ranin traces. Block size, projected size, and
reduced size are given in number of bytes.

Block
Trace Size # Blocks Projected Reduced
day 512 33263953 3456650364 38585580
week 512 74221832 7712726204 80445044
two week 512 98709435 10257544012 113061012
full 512 119983696 12468052516 146756740
day 4096 4264887 436965644 42856668
week 4096 12033929 1232706268 96565836
two week 4096 16387433 1674557580 138910036
full 4096 22905900 2338128692 188674100
day 8192 2152146 217221140 42618692
week 8192 6271892 633318764 95528612
two week 8192 8586028 862968436 136909676
full 8192 12193122 1223027532 185049796

TABLE III. Comparison of reduction by
percentage and savings of all ranin traces.
Block size and savings are given in num-
ber of bytes.
Trace Block Size Savings Reduction %
day 512 3418064784 0.9888372916
week 512 7632281160 0.9895698302
two week 512 10144483000 0.9889777697
full 512 12321295776 0.9882293775
day 4096 394108976 0.9019221108
week 4096 1136140432 0.9216635475
two week 4096 1535647544 0.9170467247
full 4096 2149454592 0.9193055110
day 8192 174602448 0.8038004404
week 8192 537790152 0.8491618796
two week 8192 726058760 0.8413503087
full 8192 1037977736 0.8486953146

size up to 99%, and in all cases tested reducing required
space to less than 200 megabytes, even for the largest
workloads used. This first order successor information
has been shown in previous work to be useful for
prefetch prediction and caching as well as disk layout
management.
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