6,819 research outputs found

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Combined Coverage Area Reporting and Geographical Routing in Wireless Sensor-Actuator Networks for Cooperating with Unmanned Aerial Vehicles

    Get PDF
    In wireless sensor network (WSN) applications with multiple gateways, it is key to route location dependent subscriptions efficiently at two levels in the system. At the gateway level, data sinks must not waste the energy of the WSN by injecting subscriptions that are not relevant for the nodes in their coverage area and at WSN level, energy-efficient delivery of subscriptions to target areas is required. In this paper, we propose a mechanism in which (1) the WSN provides an accurate and up-to-date coverage area description to gateways and (2) the wireless sensor network re-uses the collected coverage area information to enable efficient geographical routing of location dependent subscriptions and other messages. The latter has a focus on routing of messages injected from sink nodes to nodes in the region of interest. Our proposed mechanisms are evaluated in simulation
    • …
    corecore