147 research outputs found

    Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation

    Full text link
    TensorFlow has been the most widely adopted Machine/Deep Learning framework. However, little exists in the literature that provides a thorough understanding of the capabilities which TensorFlow offers for the distributed training of large ML/DL models that need computation and communication at scale. Most commonly used distributed training approaches for TF can be categorized as follows: 1) Google Remote Procedure Call (gRPC), 2) gRPC+X: X=(InfiniBand Verbs, Message Passing Interface, and GPUDirect RDMA), and 3) No-gRPC: Baidu Allreduce with MPI, Horovod with MPI, and Horovod with NVIDIA NCCL. In this paper, we provide an in-depth performance characterization and analysis of these distributed training approaches on various GPU clusters including the Piz Daint system (6 on Top500). We perform experiments to gain novel insights along the following vectors: 1) Application-level scalability of DNN training, 2) Effect of Batch Size on scaling efficiency, 3) Impact of the MPI library used for no-gRPC approaches, and 4) Type and size of DNN architectures. Based on these experiments, we present two key insights: 1) Overall, No-gRPC designs achieve better performance compared to gRPC-based approaches for most configurations, and 2) The performance of No-gRPC is heavily influenced by the gradient aggregation using Allreduce. Finally, we propose a truly CUDA-Aware MPI Allreduce design that exploits CUDA kernels and pointer caching to perform large reductions efficiently. Our proposed designs offer 5-17X better performance than NCCL2 for small and medium messages, and reduces latency by 29% for large messages. The proposed optimizations help Horovod-MPI to achieve approximately 90% scaling efficiency for ResNet-50 training on 64 GPUs. Further, Horovod-MPI achieves 1.8X and 3.2X higher throughput than the native gRPC method for ResNet-50 and MobileNet, respectively, on the Piz Daint cluster.Comment: 10 pages, 9 figures, submitted to IEEE IPDPS 2019 for peer-revie

    Exascale Deep Learning for Climate Analytics

    Full text link
    We extract pixel-level masks of extreme weather patterns using variants of Tiramisu and DeepLabv3+ neural networks. We describe improvements to the software frameworks, input pipeline, and the network training algorithms necessary to efficiently scale deep learning on the Piz Daint and Summit systems. The Tiramisu network scales to 5300 P100 GPUs with a sustained throughput of 21.0 PF/s and parallel efficiency of 79.0%. DeepLabv3+ scales up to 27360 V100 GPUs with a sustained throughput of 325.8 PF/s and a parallel efficiency of 90.7% in single precision. By taking advantage of the FP16 Tensor Cores, a half-precision version of the DeepLabv3+ network achieves a peak and sustained throughput of 1.13 EF/s and 999.0 PF/s respectively.Comment: 12 pages, 5 tables, 4, figures, Super Computing Conference November 11-16, 2018, Dallas, TX, US

    Optimizing Collective Communication for Scalable Scientific Computing and Deep Learning

    Get PDF
    In the realm of distributed computing, collective operations involve coordinated communication and synchronization among multiple processing units, enabling efficient data exchange and collaboration. Scientific applications, such as simulations, computational fluid dynamics, and scalable deep learning, require complex computations that can be parallelized across multiple nodes in a distributed system. These applications often involve data-dependent communication patterns, where collective operations are critical for achieving high performance in data exchange. Optimizing collective operations for scientific applications and deep learning involves improving the algorithms, communication patterns, and data distribution strategies to minimize communication overhead and maximize computational efficiency. Within the context of this dissertation, the specific focus is on optimizing the alltoall operation in 3D Fast Fourier Transform (FFT) applications and the allreduce operation in parallel deep learning, particularly on High-Performance Computing (HPC) systems. Advanced communication algorithms and methods are explored and implemented to improve communication efficiency, consequently enhancing the overall performance of 3D FFT applications. Furthermore, this dissertation investigates the identification of performance bottlenecks during collective communication over Horovod on distributed systems. These bottlenecks are addressed by proposing an optimized parallel communication pattern specifically tailored to alleviate the aforementioned limitations during the training phase in distributed deep learning. The objective is to achieve faster convergence and improve the overall training efficiency. Moreover, this dissertation proposes fault tolerance and elastic scaling features for distributed deep learning by leveraging the User-Level Failure Mitigation (ULFM) from Message Passing Interface (MPI). By incorporating ULFM MPI, the dissertation aims to enhance the elastic capabilities of distributed deep learning systems. This approach enables graceful and lightweight handling of failures while facilitating seamless scaling in dynamic computing environments

    SparCML: High-Performance Sparse Communication for Machine Learning

    Full text link
    Applying machine learning techniques to the quickly growing data in science and industry requires highly-scalable algorithms. Large datasets are most commonly processed "data parallel" distributed across many nodes. Each node's contribution to the overall gradient is summed using a global allreduce. This allreduce is the single communication and thus scalability bottleneck for most machine learning workloads. We observe that frequently, many gradient values are (close to) zero, leading to sparse of sparsifyable communications. To exploit this insight, we analyze, design, and implement a set of communication-efficient protocols for sparse input data, in conjunction with efficient machine learning algorithms which can leverage these primitives. Our communication protocols generalize standard collective operations, by allowing processes to contribute arbitrary sparse input data vectors. Our generic communication library, SparCML, extends MPI to support additional features, such as non-blocking (asynchronous) operations and low-precision data representations. As such, SparCML and its techniques will form the basis of future highly-scalable machine learning frameworks

    The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism

    Full text link
    We present scalable hybrid-parallel algorithms for training large-scale 3D convolutional neural networks. Deep learning-based emerging scientific workflows often require model training with large, high-dimensional samples, which can make training much more costly and even infeasible due to excessive memory usage. We solve these challenges by extensively applying hybrid parallelism throughout the end-to-end training pipeline, including both computations and I/O. Our hybrid-parallel algorithm extends the standard data parallelism with spatial parallelism, which partitions a single sample in the spatial domain, realizing strong scaling beyond the mini-batch dimension with a larger aggregated memory capacity. We evaluate our proposed training algorithms with two challenging 3D CNNs, CosmoFlow and 3D U-Net. Our comprehensive performance studies show that good weak and strong scaling can be achieved for both networks using up 2K GPUs. More importantly, we enable training of CosmoFlow with much larger samples than previously possible, realizing an order-of-magnitude improvement in prediction accuracy.Comment: 12 pages, 10 figure

    Analyzing the impact of the MPI allreduce in distributed training of convolutional neural networks

    Get PDF
    For many distributed applications, data communication poses an important bottleneck from the points of view of performance and energy consumption. As more cores are integrated per node, in general the global performance of the system increases yet eventually becomes limited by the interconnection network. This is the case for distributed data-parallel training of convolutional neural networks (CNNs), which usually proceeds on a cluster with a small to moderate number of nodes. In this paper, we analyze the performance of the Allreduce collective communication primitive, a key to the efficient data-parallel distributed training of CNNs. Our study targets the distinct realizations of this primitive in three high performance instances of Message Passing Interface (MPI), namely MPICH, OpenMPI, and IntelMPI, and employs a cluster equipped with state-of-the-art processor and network technologies. In addition, we apply the insights gained from the experimental analysis to the optimization of the TensorFlow framework when running on top of Horovod. Our study reveals that a careful selection of the most convenient MPI library and Allreduce (ARD) realization accelerates the training throughput by a factor of 1.2× compared with the default algorithm in the same MPI library, and up to 2.8× when comparing distinct MPI libraries in a number of relevant combinations of CNN model+dataset
    corecore