4 research outputs found

    Energy-aware dynamic virtual machine consolidation for cloud datacenters

    Get PDF

    A Multimedia Cloud Computing Model for Combinatorial Virtual Machine Placement

    Get PDF
    Cloud computing, which allows users to access subscription-based services on a pay-as-you-go basis, has recently transformed IT departments. Today, a variety of media services are offered through the Internet owing to the development of multimedia cloud computing, which is based on cloud computing. However, as multimedia cloud computing spreads, it has a negative influence on greenhouse gas emissions due to its high energy consumption and raises expenses for cloud users. Therefore, while still providing consumers with the resources they require and maintaining a high level of service, multimedia cloud service providers should make every effort to consume as little energy as possible. This proposal proposes residual usage-aware (RUA) and performance-aware (PA) methods for virtual machine placement. To save energy, find a suitable host to switch off. These two techniques were merged and applied to cloud data centers in order to complete the VM consolidation process. The outcomes of the simulation demonstrate a trade-off between energy consumption and SLA violations. Additionally, during VM deployment, it can manage shifting workloads to prevent host overload, dramatically lowering SLA breaches

    Machine learning based Model for Cloud Load Prediction and Resource Allocation

    Get PDF
    Elasticity and the lack of upfront capital investment offered by cloud computing is appealing to many businesses. There is a lot of discussion on the benefits and costs of the cloud model and on how to move legacy applications onto the cloud platform. Here we study a different problem: how can a cloud service provider best multiplex its virtual resources onto the physical hardware? This is important because much of the touted gains in the cloud model come from such multiplexing. Studies have found that servers in many existing data centers are often severely under-utilized due to over-provisioning for the peak demand. The cloud model is expected to make such practice unnecessary by offering automatic scale up and down in response to load variation. Besides reducing the hardware cost, it also saves on electricity which contributes to a significant portion of the operational expenses in large data centers. Proper resource allocation for various virtualized resources must be based on these cloud load predictions. The presence of heterogeneous applications, such as content delivery networks, web applications, and MapReduce tasks, complicates this process. Cloud workloads with conflicting resource allocation needs for communication and information processing further exacerbate the difficulty

    Design and Development of an Energy Efficient Multimedia Cloud Data Center with Minimal SLA Violation

    Get PDF
    Multimedia computing (MC) is rising as a nascent computing paradigm to process multimedia applications and provide efficient multimedia cloud services with optimal Quality of Service (QoS) to the multimedia cloud users. But, the growing popularity of MC is affecting the climate. Because multimedia cloud data centers consume an enormous amount of energy to provide services, it harms the environment due to carbon dioxide emissions. Virtual machine (VM) migration can effectively address this issue; it reduces the energy consumption of multimedia cloud data centers. Due to the reduction of Energy Consumption (EC), the Service Level Agreement violation (SLAV) may increase. An efficient VM selection plays a crucial role in maintaining the stability between EC and SLAV. This work highlights a novel VM selection policy based on identifying the Maximum value among the differences of the Sum of Squares Utilization Rate (MdSSUR) parameter to reduce the EC of multimedia cloud data centers with minimal SLAV. The proposed MdSSUR VM selection policy has been evaluated using real workload traces in CloudSim. The simulation result of the proposed MdSSUR VM selection policy demonstrates the rate of improvements of the EC, the number of VM migrations, and the SLAV by 28.37%, 89.47%, and 79.14%, respectively
    corecore