6,543 research outputs found

    Optimum Wirelessly Powered Relaying

    Get PDF
    This letter maximizes the achievable throughput of a relay-assisted wirelessly powered communications system, where an energy constrained source, assisted by an energy constrained relay and both powered by a dedicated power beacon (PB), communicates with a destination. Considering the time splitting approach, the source and relay first harvest energy from the PB, which is equipped with multiple antennas, and then transmits the information to destination. Simple closed-form expressions are derived for the optimal PB energy beamforming vector and time split for energy harvesting and information transmission. Numerical results and simulations demonstrate the superior performance compared with some intuitive benchmark beamforming scheme. Also, it is found that placing the relay at the middle of the source-destination path is no longer optimal

    Real-time Optimal Resource Allocation for Embedded UAV Communication Systems

    Get PDF
    We consider device-to-device (D2D) wireless information and power transfer systems using an unmanned aerial vehicle (UAV) as a relay-assisted node. As the energy capacity and flight time of UAVs is limited, a significant issue in deploying UAV is to manage energy consumption in real-time application, which is proportional to the UAV transmit power. To tackle this important issue, we develop a real-time resource allocation algorithm for maximizing the energy efficiency by jointly optimizing the energy-harvesting time and power control for the considered (D2D) communication embedded with UAV. We demonstrate the effectiveness of the proposed algorithms as running time for solving them can be conducted in milliseconds.Comment: 11 pages, 5 figures, 1 table. This paper is accepted for publication on IEEE Wireless Communications Letter

    Enabling D2D Transmission Mode with Energy Harvesting and Information Transfer in Heterogeneous Networks

    Get PDF
    The concept of energy harvesting-assisted relay has been introduced to support the relaying transmission using Device-to-Device (D2D) communications for enhancing communication reliability. Motivated by the recent advance in Heterogeneous Network (HetNet) using relaying techniques, we consider the D2D communication provided by Energy Harvesting (EH) assisted relay where signal is forwarded from a Base Station (BS) to the conventional cellular user (non-D2D user) and D2D user. We first derive the outage probability by taking into account the SNR and power allocation parameters, and propose the transmission mode for D2D link as well as non-D2D link. After deriving the outage probability of the D2D-HetNet, we explore the effects of the network parameters on the outage probability and throughput

    Enabling non-linear energy harvesting in power domain based multiple access in relaying networks: Outage and ergodic capacity performance analysis

    Get PDF
    The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future access policy, especially in the deployment of power-constrained relays for a three-node dual-hop system. In particular, PDMA and energy harvesting are considered as two communication concepts, which are jointly investigated in this paper. However, the dual-hop relaying network system is a popular model assuming an ideal linear energy harvesting circuit, as in recent works, while the practical system situation motivates us to concentrate on another protocol, namely non-linear energy harvesting. As important results, a closed-form formula of outage probability and ergodic capacity is studied under a practical non-linear energy harvesting model. To explore the optimal system performance in terms of outage probability and ergodic capacity, several main parameters including the energy harvesting coefficients, position allocation of each node, power allocation factors, and transmit signal-to-noise ratio (SNR) are jointly considered. To provide insights into the performance, the approximate expressions for the ergodic capacity are given. By matching analytical and Monte Carlo simulations, the correctness of this framework can be examined. With the observation of the simulation results, the figures also show that the performance of energy harvesting-aware PDMA systems under the proposed model can satisfy the requirements in real PDMA applications.Web of Science87art. no. 81

    Wireless powered D2D communications underlying cellular networks: design and performance of the extended coverage

    Get PDF
    Because of the short battery life of user equipments (UEs), and the requirements for better quality of service have been more demanding, energy efficiency (EE) has emerged to be important in device-to-device (D2D) communications. In this paper, we consider a scenario, in which D2D UEs in a half-duplex decode-and-forward cognitive D2D communication underlying a traditional cellular network harvest energy and communicate with each other by using the spectrum allocated by the base station (BS). In order to develop a practical design, we achieve the optimal time switching (TS) ratio for energy harvesting. Besides that, we derive closed-form expressions for outage probability, sum-bit error rate, average EE and instantaneous rate by considering the scenario when installing the BS near UEs or far from the UEs. Two communication types are enabled by TS-based protocol. Our numerical and simulation results prove that the data rate of the D2D communication can be significantly enhanced.Web of Science58439939
    corecore