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Real-time Optimal Resource Allocation for
Embedded UAV Communication Systems

Minh-Nghia Nguyen, Long D. Nguyen, Trung Q. Duong, and Hoang Duong Tuan

Abstract—We consider device-to-device (D2D) wireless infor-
mation and power transfer systems using an unmanned aerial
vehicle (UAV) as a relay-assisted node. As the energy capacity
and flight time of UAVs is limited, a significant issue in deploying
UAV is to manage energy consumption in real-time application,
which is proportional to the UAV transmit power. To tackle this
important issue, we develop a real-time resource allocation algo-
rithm for maximizing the energy efficiency by jointly optimizing
the energy-harvesting time and power control for the considered
(D2D) communication embedded with UAV. We demonstrate the
effectiveness of the proposed algorithms as running time for
solving them can be conducted in milliseconds.

I. INTRODUCTION

Unmanned aerial vehicle (UAV)-based communication net-
works with their flexible configuration and mobility nature
can be more efficient and inexpensive for deployment of
future wireless network [1] and the Internet of Things (IoT)
applications [2]. Moreover, it has been emphasized that UAV-
based wireless systems are capable of enhancing wireless
communications by virtue of the dominant presence of line-
of-sight (LOS) connections [1]. Therefore, UAVs can totally
provide novel schemes to enhance the network coverage for
serving more wireless devices. A major issue in UAV-based
applications is that UAV devices typically have limited energy
storage for flying operations whereby the deployment and
resource allocation such as spectrum or transmit power alloca-
tion should be considered for efficient utility [3], [4]. However,
there are only a few existing works that concentrate on the
resource allocation aspect to improve the energy efficiency
(EE) performance of UAV-based networks [5].

Although UAV has been widely recognized as a promising
technology to improve wireless networks performance, its fun-
damental potential has not fully been exploited. An interesting
development in UAV-based networks is the application of
wireless energy transfer (WPT). As a matter of fact, WPT
in radio frequency has recently promised advance technology
for providing energy to wireless devices over the air (see e.g.
[6] and the references therein). Very recently, WPT for UAV-
enabled device-to-device (D2D) networks has been considered
in [7] where UAVs can operate as an energy supplier for
multiple D2D pairs. Nevertheless, this work only considers
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throughput maximization and does not focus on the aforemen-
tioned EE problem, which is crucial for providing efficient and
lasting operation. To tackle this issue, we address the EE prob-
lem in the scenario of UAV-based relay network supporting
energy harvesting-enabled D2D communications. In particular,
we investigate the issues of not only power allocation but
also energy harvesting time, which will be formulated as a
joint optimization problem in energy harvesting-powered D2D
communications. Nevertheless, joint optimization problems
are often complicated, for which we propose low-complexity
efficient resource allocation algorithms.

Another critical issue in UAV is the real-time control and
operation due to its lifetime and dynamic environment. As
such, we study the resource allocation problem for energy
harvesting-powered D2D communications underlaying UAV
networks using real-time optimization. With the rapid im-
provement of computational speed as well as the use of
efficient algorithms and advanced coding approaches, the
embedded convex approach is able to solve the optimal
resource allocation problems in the level of microseconds
or milliseconds time scales with strict time limits [8]. A
lot of resource allocation optimization problems have been
considered in wireless communications. However, there is still
a lack of investigation for real-time optimization problem.
With the exceeding development of computing performance,
the solving optimization problems in real world have become
a necessary trend of wireless communication. To fulfil this
gap, for the first time, this paper has considered real-time
optimization for resource allocation for embedded UAV-based
communication systems.

Fig. 1: D2D communications assisted by UAV.

II. PROBLEM STATEMENTS

Consider a communication system with one UAV mobile
serving multiple energy harvesting-powered D2D pairs as
shown in Fig. 1. The UAV and users are equipped with
a single antenna. Given a unitary communication time-slot,
the energy harvesting and transmit information in UAV D2D
network occur in two phases. In the first phase spanning τ with
0 < τ < 1, the dedicated D2D-transmitter (D2D-Tx) harvests
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energy from UAV. Then, in the second phase spanning (1− τ)
the information transmission happens between D2D pairs. The
set of D2D pairs is denoted by N = {1, 2, ..., N}. The energy
harvested at the nth D2D-Tx is given by

En = τηP0gn (1)

where 0 < η < 1 is the energy harvesting efficiency, P0 is the
maximum total transmit power at UAV, and gn is the channel
power gain from the UAV to nth D2D-Tx.

For practice purpose, each user is assumed to utilize the
harvested energy for information transmission phase. Denote
by pn the transmission power of the nth D2D pair. The
following energy causality constraint must be satisfied

(1− τ)pn ≤ τηP0gn, n ∈ N (2)

For p = [pn]Nn=1, the information throughput (in nats) at nth
D2D pair is

rn(τ,p) = (1− τ) ln

(
1 +

pnhn,n∑N
i 6=n pihn,i + σ2

)
(3)

where hn,i is the channel gain for the link from the nth D2D-
Tx to ith D2D-receiver (D2D-Rx) and σ2 is the noise power.
Next, the total power consumption in the considered D2D
network is written by

ϑ(τ,p) =

N∑
n=1

(1− τ)pn + τηP0 + Pcir. (4)

where Pcir is the circuit non-transmit power at the UAV.
In our work, the main target is to maximize the EE of

UAV networks while satisfying the energy causality constraint
and quality-of-service (QoS) constraint for each D2D pair. As
such, the EE maximization problem is as follows:

max
τ,p>0

φ =

∑N
n=1 rn(τ,p)

ϑ(τ,p)
s.t. (2) (5a)

rn(τ,p) ≥ r̄, n ∈ N , (5b)
0 ≤ τ ≤ 1, (5c)

where the rate threshold r̄ represents the QoS constraints.
Note that the problem in (5) is nonconvex because of

the nonconcave objective functions (5a) and the nonlinear
constraint (5b). In the next section, we propose a novel
optimization scenario for solving problem (5) in real-time
embedded application.

III. JOINT HARVESTING TIME AND POWER ALLOCATION
(JHTPA) FOR EE MAXIMIZATION

In this section, we propose a practical algorithm for the EE
maximization problem (5) by jointly optimizing the energy
harvesting time and power allocation. To solve the problem
(5), we first change the variables [9]

1− τ =
1

θ
and pn →

1

pn
, n = 1, ..., N

such that the variable satisfy the convex constraint

θ > 1. (6)

Then, the problem (5) is equivalent to

max
θ,p

φ =

∑N
n=1 rn(θ,p)

ϑ(θ,p)
s.t. (6) (7a)

1/pn ≤ (θ − 1)ηP0gn, n ∈ N (7b)

1

θ
ln

(
1 +

hn,n

pn
∑N
i 6=n hn,i/pi + pnσ2

)
≥ r̄, n ∈ N .

(7c)

where ϑ(θ,p) =
∑N
n=1 1/(θpn) + (1− 1/θ)ηP0 + Pcir.

To solve the problem (7), we use the logarithmic inequality
[10]

1

t
ln(1 +

1

xy
) ≥ 2

t̄
ln
(

1 +
1

x̄ȳ

)
+

2

t̄(x̄ȳ + 1)

− 1

t̄x̄(x̄ȳ + 1)
x− 1

t̄ȳ(x̄ȳ + 1)
y − ln(1 + 1/x̄ȳ)

t̄2
t (8)

∀t > 0, t̄ > 0, x > 0, x̄ > 0, y > 0, ȳ > 0.

which follows from the convexity of function ln
(

1+1/xy
)
/t.

For x = pn/hn,n, y =
∑N
i 6=n hi,n/pi + σ2, t = θ, x̄ =

x(κ) = p
(κ)
n /hn,n, ȳ = y(κ) =

∑N
i 6=n hi,n/p

(κ)
i + σ2, t̄ =

t(κ) = θ(κ), thus, the throughput can be approximated as

rn(θ,p) ≥ ψ(κ)
n (θ,p) (9)

where

ψ(κ)
n (θ,p) =

2

t(κ)
ln
(

1 +
1

x(κ)y(κ)

)
+

2

t(κ)(x(κ)y(κ) + 1)

− 1

t(κ)x(κ)(x(κ)y(κ) + 1)
x− 1

t(κ)y(κ)(x(κ)y(κ) + 1)
y

− ln(1 + 1/x(κ)y(κ))

(t(κ))2
t. (10)

With the feasible points (θ(k), p(k)) of (7), one has

φ(κ) =

N∑
n=1

ψn(θ(κ),p(κ))/ϑ(θ(κ),p(κ)).

At the κth iteration, the following convex program is solved
to generate the next feasible point

max
θ,p

N∑
n=1

ψ(κ)
n (θ,p)− φ(κ)ϑ(κ)(θ,p) s.t. (6), (7b), (11a)

ψ(κ)
n (θ,p) ≥ r̄, n ∈ N . (11b)

where ϑ(κ)(θ,p) =
∑N
n=1 1/(θpn) + (1 − 2/θ(κ) +

θ/(θ(κ))2)ηP0 + Pcir.
We propose an algorithm to solve the EE maximization

(11). The initial point (θ(0), p(0)) for (11) is easily located by
random search such that it satisfies the constraints in problem
(7).
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Algorithm 1 : Joint optimal harvesting time and power
allocation problem (7)

1: Initialization: Set feasible points θ(0), p(0), κ = 0
and φ(0) =

∑N
n=1 ψn(θ(0),p(0))/ϑ(θ(0),p(0)). Set the

tolerance ε = 10−2.
2: Repeat
3: Solve the (11) for the optimal so-

lution (θ(κ+1),p(κ+1)). Set φ(κ+1) =∑N
n=1 ψn(θ(κ+1),p(κ+1))/ϑ(θ(κ+1),p(κ+1)).

4: Set κ := κ+ 1
5: Stop convergence of the objective in (11).

IV. NEAR-OPTIMAL RESOURCE ALLOCATION
ALGORITHMS FOR EE MAXIMIZATION

In this section, two low-complexity procedures are pre-
sented as conventional methods to evaluate the effectiveness
of JHTPA in EE performance and solving time.

A. Optimal Power allocation (OPA)

This algorithm addresses power allocation for EE maximiza-
tion problem (5) where the harvesting time value is fixed as
1− τ = 1/θfix, θfix > 1. Thus, problem (5) is equivalent to

max
p

φ =

∑N
n=1 rn(θfix,p)

ϑ(θfix,p)
(12a)

s.t. pn ≤ (θfix − 1)ηP0gn, n ∈ N (12b)

ln

(
1 +

pnhn,n∑N
i6=n hn,ipi + σ2

)
≥ θfixr̄, n ∈ N . (12c)

where ϑ(θfix,p) =
∑N
n=1 pn/θfix + (1− 1/θfix)ηP0 + Pcir.

To solve the nonconvex problem (12), we apply the inequal-
ity (8) for x = 1/pnhn,n, y =

∑N
i6=n hi,npi+σ2, t = 1, and

x̄ = x(κ) = 1/p
(κ)
n hn,n, ȳ = y(κ) =

∑N
i 6=n hi,np

(κ)
i +σ2, t̄ =

t(κ) = 1.
Then, the numerator of objective function in (12) can be

approximated as

rn(θfix,p) ≥ ψ̄(κ)
n (θfix,p) (13)

where ψ̄(κ)
n (θfix,p) is defined as (10).

At the κth iteration, the following convex program is solved
to generate the next feasible point

max
p

N∑
n=1

ψ̄(κ)
n (θfix,p)− φ(κ)ϑ(θfix,p) (14a)

s.t. (12b), (12c) (14b)

where φ(κ) =
∑N
n=1 ψ̄n(θfix,p

(κ))/ϑ(θfix,p
(κ)).

B. Optimal harvesting time (OHT)

This algorithm solves the harvesting time optimization
problem in the slack variable of θ with the use of maximum
harvested power in D2D communication as follows:

pn = (θ − 1)ηP0gn

Therefore, the maximin sum-rate problem with fixed har-
vested energy is given by

max
θ

min
n∈N

rn(θ) s.t. (6) (15)

where rn(θ) = 1
θ ln

(
1 +

(θ−1)hn,ngn
(θ−1)

∑N
i6=n hn,igi+σ2/ηP0

)
.

Next, the objective function in (15) can be approximated
by using the inequality (8) for x = 1/(θ − 1)hn,ngn, y =

(θ− 1)
∑N
i 6=n hi,ngi +σ2/ηP0, t = θ, x̄ = x(κ) = 1/(θ(κ)−

1)hn,ngn, ȳ = y(κ) = (θ(κ)− 1)
∑N
i 6=n hi,ngi + σ2/ηP0, t̄ =

t(κ) = θ(κ), and thus one has

rn(θ) ≥ ψ̂(κ)
n (θ) (16)

where ψ̂(κ)
n (θ) is defined as (10).

At the κth iteration, the following max-min program is
solved to generate the next feasible point

max
θ

min
n∈N

ψ̂(κ)
n (θ) s.t. (6). (17)

Hence, we assume that θ∗ is the optimal solution of problem
(15). Then, the EE performance is defined as

φ(θ∗) =

∑N
n=1 rn(θ∗)

ϑ(θ∗)
(18)

where ϑ(θ∗) = (1− 1/θ∗)ηP0(
∑N
n=1 gn + 1) + Pcir.

V. IMPLEMENTATIONS

In this section, we evaluate the performance of the UAV
network by embedded optimization module implemented in
Python [11]. The results are obtained using CVXPY 0.4.11
package with ECOS solver. The computational platform is a
laptop with an Intel Core(TM) i7, CPU @2.80GHz and 16GB
memory.

An example structure of real-time embedded optimization
for UAV network is shown in Fig. 2. We consider a center
unit (CU) as a ground station for exchanging information of
D2D netowrk with UAV and the UAV mobile is located at the
center of a circle coverage network with radius 800m while
being at the height of H = 50. The D2D pairs are randomly
distributed in the coverage network and the maximum distance
between D2D-Tx and D2D-Rx is 50m.

Fig. 2: A structure of real-time embedded optimization.

Similar to [7], the channel power gain between D2D-Tx and
D2D-Rx is modelled as

hn,n = β0ρ
2
nD
−αh (19)

where β0 is the channel power gain at the reference distance
d0, ρn is an exponentially distributed random variable with
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unit mean, D is the distance between D2D-Tx and D2D-Rx,
and αh represents the path loss exponent for D2D links.

Furthermore, we exploit the air-to-ground (ATG) channel
model for D2D UAV-assisted communication [12], [13]. The
channel power gain from the UAV to the nth D2D-Tx located
at (x, y) under the LOS or NLOS links is given by

gn = PrLOS × (
√
x2 + y2 +H2)−αg

+PrNLOS × γ(
√
x2 + y2 +H2)−αg (20)

where PrLOS = 1/(1 + a × exp(−b[ϕ − a])) is the LOS
probability where a and b are constant values depending on
the environment. Then, one has PrNLOS = 1− PrLOS , and
αg represents the path loss exponent from UAV to D2D-Tx.
The elevation angle ϕ in terms of degree unit is given by

ϕ = 180
π × sin−1

(
H√

x2+y2+H2

)
.

The QoS constraint is set as

r̄ = min{rn(θfix), 0.2}bps/Hz (21)

where rn(θfix) is defined in (15).
Other simulation parameters in the considered D2D UAV

network are provided in Table I as [7], [13].

TABLE I: Simulation parameters

Parameter Numerical value
Bandwidth 1 MHz
UAV transmission power 5 W
Path-loss exponents αh = 3, αg = 3
Channel power gain at the reference β0 = −30 dB
Noise power density −130 dBm/Hz
Energy harvesting efficiency η = 0.5
UAV non-transmission power 4 W
ATG channel parameters a = 11.95, b = 0.136
The excessive attenuation factor γ = 20 dB
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Fig. 3: The average running times of OPA for τ = 0.5, OHT
and JHTPA algorithms versus the number of D2D pairs.

Fig. 3 plots the average running time for solving the
algorithms of JHTPA, OPA, OHT. As can be observed from
this figure, the solving time of all algorithms is in milliseconds
within 10 D2D pairs. For instance, with 5 D2D pairs, the
running time is lower than 50 milliseconds for OPA and OHT
and around 150 milliseconds for JHTPA.

From Figs. 3 and 4, we demonstrate the trade-off between
the solving time and the EE performance which should be
carefully considered in real time applications. Although the
running time for JHTPA algorithm is higher than that for
OPA and OHT, the EE performance in JHTPA significantly
outperforms the two other algorithms. Interestingly, the EE

performance of OPA algorithm exceeds that for OHT algo-
rithm when the number of D2D pairs increases, while the
running time in these two algorithms is almost identical. As
such, by focusing on adaptive power allocation, the OPA
algorithm offers a better solution over the OHT algorithm.
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Fig. 4: The EE performance of OPA for τ = 0.5, OHT and
JHTPA algorithms versus the number of D2D pairs.

VI. CONCLUSIONS

In this paper, we have proposed the real-time resource
allocation for D2D communications assisted by UAV. We have
shown that our real-time optimization is very suitable for UAV
application where the real-time control is a crucial issue.

REFERENCES

[1] L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in UAV
communication networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 2,
pp. 1123–1152, Secondquarter 2016.

[2] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet Things J., vol. 3, no. 6, pp. 899–
922, Dec 2016.

[3] S. Zhang, H. Zhang, Q. He, K. Bian, and L. Song, “Joint trajectory
and power optimization for UAV relay networks,” IEEE Commun. Lett.,
vol. PP, no. 99, pp. 1–1, 2017.

[4] J. Baek, S. I. Han, and Y. Han, “Optimal resource allocation for non-
orthogonal transmission in UAV relay systems,” IEEE Wireless Commun.
Lett., vol. PP, no. 99, pp. 1–1, 2017.

[5] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Trans. on Wireless Commun., vol. 16,
no. 6, pp. 3747–3760, June 2017.

[6] S. Bi, C. K. Ho, and R. Zhang, “Wireless powered communication:
opportunities and challenges,” IEEE Commun. Mag., vol. 53, no. 4, pp.
117–125, April 2015.

[7] H. Wang, J. Wang, G. Ding, L. Wang, T. A. Tsiftsis, and P. K. Sharma,
“Resource allocation for energy harvesting-powered D2D communica-
tion underlaying UAV-assisted networks,” IEEE Trans. Green Commun.
and Netw., vol. PP, no. 99, pp. 1–1, 2017.

[8] J. Mattingley and S. Boyd, “Real-time convex optimization in signal
processing,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 50–61, May
2010.

[9] A. A. Nasir, H. D. Tuan, D. T. Ngo, T. Q. Duong, and H. V. Poor,
“Beamforming design for wireless information and power transfer
systems: Receive power-splitting versus transmit time-switching,” IEEE
Trans. Commun., vol. 65, no. 2, pp. 876–889, Feb 2017.

[10] L. D. Nguyen, H. D. Tuan, T. Q., and H. V. Poor, “Multi-cell massive
MIMO beamforming in assuring qos for large numbers of users,” arXiv
preprint arXiv:1712.03548, 2017.

[11] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[12] J. Holis and P. Pechac, “Elevation dependent shadowing model for
mobile communications via high altitude platforms in built-up areas,”
IEEE Trans. Antennas and Propag., vol. 56, no. 4, pp. 1078–1084, April
2008.

[13] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial
vehicle with underlaid device-to-device communications: Performance
and tradeoffs,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 3949–
3963, June 2016.


