1,072,108 research outputs found
Local flexibility market design for aggregators providing multiple flexibility services at distribution network level
This paper presents a general description of local flexibility markets as a market-based management mechanism for aggregators. The high penetration of distributed energy resources introduces new flexibility services like prosumer or community self-balancing, congestion management and time-of-use optimization. This work is focused on the flexibility framework to enable multiple participants to compete for selling or buying flexibility. In this framework, the aggregator acts as a local market operator and supervises flexibility transactions of the local energy community. Local market participation is voluntary. Potential flexibility stakeholders are the distribution system operator, the balance responsible party and end-users themselves. Flexibility is sold by means of loads, generators, storage units and electric vehicles. Finally, this paper presents needed interactions between all local market stakeholders, the corresponding inputs and outputs of local market operation algorithms from participants and a case study to highlight the application of the local flexibility market in three scenarios. The local market framework could postpone grid upgrades, reduce energy costs and increase distribution grids’ hosting capacity.Postprint (published version
Recommended from our members
ASEAN grid flexibility: Preparedness for grid integration of renewable energy
In 2015, ASEAN established a goal of increasing its renewable energy share in its energy portfolio from approximately 13–23% by 2025. Renewable electricity, especially intermittent and variable sources, presents challenges for grid operators due to the uncertain timing and quantity of electricity supply. Grid flexibility, the electric grid's ability to respond to changing demands and supply, now stands a key resource in responding to these uncertainties while maximizing the cost-effective role of clean energy. We develop and apply a grid flexibility assessment tool to assess ASEAN's current grid flexibility using six quantitative indicators: grid reliability, electricity market access; load profile ramp capacity; quality of forecasting tools; proportion of electricity generation from natural gas; and renewable energy diversity. We find that ASEAN nations cluster into three groups: better; moderately; and the least prepared nations. We develop an analytical ramp rate calculator to quantify expected load ramps for ASEAN in an integrated ASEAN Power Grid scenario. The lack of forecasting systems and limited electricity market access represent key weaknesses and areas where dramatic improvements can become cost-effective means to increase regional grid flexibility. As ASEAN pursues renewable energy targets, regional cooperation remains essential to address identified challenges. Member nations need to increase grid flexibility capacity to adequately prepare for higher penetrations of renewable electricity and lower overall system costs
Energy Disaggregation for Real-Time Building Flexibility Detection
Energy is a limited resource which has to be managed wisely, taking into
account both supply-demand matching and capacity constraints in the
distribution grid. One aspect of the smart energy management at the building
level is given by the problem of real-time detection of flexible demand
available. In this paper we propose the use of energy disaggregation techniques
to perform this task. Firstly, we investigate the use of existing
classification methods to perform energy disaggregation. A comparison is
performed between four classifiers, namely Naive Bayes, k-Nearest Neighbors,
Support Vector Machine and AdaBoost. Secondly, we propose the use of Restricted
Boltzmann Machine to automatically perform feature extraction. The extracted
features are then used as inputs to the four classifiers and consequently shown
to improve their accuracy. The efficiency of our approach is demonstrated on a
real database consisting of detailed appliance-level measurements with high
temporal resolution, which has been used for energy disaggregation in previous
studies, namely the REDD. The results show robustness and good generalization
capabilities to newly presented buildings with at least 96% accuracy.Comment: To appear in IEEE PES General Meeting, 2016, Boston, US
Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments
The increased penetration of uncertain and variable renewable energy presents
various resource and operational electric grid challenges. Micro-level
(household and small commercial) demand-side grid flexibility could be a
cost-effective strategy to integrate high penetrations of wind and solar
energy, but literature and field deployments exploring the necessary
information and communication technologies (ICTs) are scant. This paper
presents an exploratory framework for enabling information driven grid
flexibility through the Internet of Things (IoT), and a proof-of-concept
wireless sensor gateway (FlexBox) to collect the necessary parameters for
adequately monitoring and actuating the micro-level demand-side. In the summer
of 2015, thirty sensor gateways were deployed in the city of Managua
(Nicaragua) to develop a baseline for a near future small-scale demand response
pilot implementation. FlexBox field data has begun shedding light on
relationships between ambient temperature and load energy consumption, load and
building envelope energy efficiency challenges, latency communication network
challenges, and opportunities to engage existing demand-side user behavioral
patterns. Information driven grid flexibility strategies present great
opportunity to develop new technologies, system architectures, and
implementation approaches that can easily scale across regions, incomes, and
levels of development
Energy conversion in Bamako (Mali) : the request of flexibility
Since the mid -1970s, Sahelian countries are involved in energy policies which aim to substitute traditional energies (wood and charcoal) to modern fuels derived from petroleum. In Bamako (Mali), as in Ouagadougou (Burkina Faso) or N'Djamena (Chad), in spite of political incentives by governments in favour of fossil fuels, urban dwellers progress very slowly on the "energy ladder". Woodfuels are still the most preferred energy sources. This paper analyses the reasons of this conversion failure in the Malian capital, focusing on the preferences of the Bamakois, the incentives from the Malian government, and finally the resistance of the woodfuel market. Experience with Household Energy Policies in Mali shows that economic realism and government incentives will not persuade people to accept new fuels or new stoves. It shows also that woodfuel supply chains are alive and can react very quickly to any attempt of changes, to remain in force, and to offer urban dwellers a good energy service in terms of access and prices. Finally the analysis of Bamako's case shows that the choice of an energy portfolio is more important than a single efficient, modern and cheap source. In spite of the equivalent cost for using gas and charcoal, the more well-off people in Bamako continue to prefer woody fuels. This consumption pattern gives the people of Bamako an energy independence, which allows them not to be subjected too severely neither to marked rises in petroleum prices, nor to supply interruption. The freedom of choice is an amplified demand in urban area where the diversity in the rhythms of life and the large range of buyable foods involve the diversity of cooking habits. The request of flexibility is certainly one the reason of the failure of most conversion programmes. (Résumé d'auteur
Modular AC coupled hybrid power systems for the emerging GHG mitigation products market
Bioenergy systems particularly waste to energy (WTE) systems are increasingly gaining prominence. Market for modular hybrid energy systems (HES) combining renewable energy sources including WTEs is potentially large. Novel configuration of AC coupling for HES is discussed. Emerging opportunities for market development of hybrid energy systems under green house gas mitigation initiatives particularly Kyoto flexibility mechanisms is analysed
Energy demand prediction for the implementation of an energy tariff emulator to trigger demand response in buildings
Buildings are key actors of the electrical gird. As such they have an important role to play in grid
stabilization, especially in a context where renewable energies are mandated to become an increasingly
important part of the energy mix. Demand response provides a mechanism to reduce or displace electrical
demand to better match electrical production. Buildings can be a pool of flexibility for the grid to operate
more efficiently. One of the ways to obtain flexibility from building managers and building users is the
introduction of variable energy prices which evolve depending on the expected load and energy generation.
In the proposed scenario, the wholesale energy price of electricity, a load prediction, and the elasticity of
consumers are used by an energy tariff emulator to predict prices to trigger end user flexibility. In this paper,
a cluster analysis to classify users is performed and an aggregated energy prediction is realised using Random
Forest machine learning algorithm.This paper is part of a project that has received funding
from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No
768614. This paper reflects only the author´s views and
neither the Agency nor the Commission are responsible
for any use that may be made of the information contained
therein
- …
