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Abstract. Buildings are key actors of the electrical gird. As such they have an important role to play in grid 

stabilization, especially in a context where renewable energies are mandated to become an increasingly 

important part of the energy mix. Demand response provides a mechanism to reduce or displace electrical 

demand to better match electrical production. Buildings can be a pool of flexibility for the grid to operate 

more efficiently. One of the ways to obtain flexibility from building managers and building users is the 

introduction of variable energy prices which evolve depending on the expected load and energy generation. 

In the proposed scenario, the wholesale energy price of electricity, a load prediction, and the elasticity of 

consumers are used by an energy tariff emulator to predict prices to trigger end user flexibility. In this paper, 

a cluster analysis to classify users is performed and an aggregated energy prediction is realised using Random 

Forest machine learning algorithm.    

1 Introduction 

The increase of renewable energy in the energy mix 

implies the need to find new ways to manage the energy 

grid. Indeed, intermittency of energy production makes it 

difficult to align the production with the energy demand. 

In the traditional energy production model, centralized 

energy plants are turned on or off to supply the demand, 

but with renewable energy, there might be periods when 

the energy demand is higher than the production, while 

excess energy is produced at other moments. There is also 

an interest to reduce energy consumption peaks to avoid, 

on one hand to provide stability to the grid and avoid 

power failure, on the other hand to reduce energy prices 

as turning additional plants on for short amount of time is 

expensive. Due to the cost of electricity storage, a change 

of paradigm is required, where the energy demand is 

adapted to the energy available. This is referred to as 

demand response (DR). Demand response apply primarily 

to electricity.   

DR is traditionally applied in large commercial 

buildings and industries with high energy consumption 

and where the main process is directly related with energy 

consumption, as a few actors can provide significant 

flexibility to the grid [1]. To achieve the objectives set by 

the EU Renewable Energy Directive of 20% of 

renewables by 2020 [2] and 27% by 2030 [3], more 

sources need to be available for the demand response 

mechanism. Because they consume around a third of the 

final energy consumption, buildings are an important part 

of the energy grid and a potential reserve of energy 

flexibility, notably through their HVAC systems that can 

make use of thermal energy storage [4].   

The extension of demand response to the commercial 

and residential building market require the development 

of new mechanism to balance production and demand. 

One of them is the use of tariff signals to encourage users 

to reduce or displace their consumption when there is an 

energy demand peak. Several pricing schemes already 

exist [5]. One of the key aspects of demand response 

through price signal is a good understanding of the client 

portfolio and prediction of its aggregated energy 

consumption.   

The paper is structured as follow. Fist some 

background on demand response and the stakeholders 

involved is given. Then the principle of an energy tariff 

emulator to trigger demand response in residential and 

small/medium commercial building is presented. The 

method and preliminary analysis to devise this price 

emulator will them be presented and discussed. It includes 

a cluster analysis of the customer and the training of a 

model to predict aggregated energy consumption.   

2 Background 

To understand the stakes of demand response in the 

context of buildings, this section presents the stakeholders 

involved and the main demand response scheme 

categories.  

2.1 Stakeholders 

There are 4 main actors involved in demand response 

schemes: the end user, the utility, the retailer and the 

aggregator. End users and utilities are the traditional 

actors of the sector. New energy services like demand 
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response or energy efficiency see the emergence of other 

actors such as the aggregator or the retailer.  

2.1.1 End user 

The end user is the final client that consumes the energy. 

It is the household in the case of residential buildings and 

the facility manager in non-residential buildings.  

Both actors have similar objectives regarding demand 

response, which is to pay low energy bills while 

optimising their comfort.   

Demand response can give residential and 

medium/small tertiary consumers an active role in their 

own electricity consumption. User engagement is one of 

the challenges of demand response.    

2.1.2 Utility 

Utilities produce and distribute the energy. Those two 

functions can be carried out by different companies or 

different filial of the same company. Their objective is to 

minimize the cost of energy production and of grid 

management while satisfying energy needs. This is easier 

to achieved for regular electricity production as it is costly 

to turn energy plants on and off for a short period. In this 

sense, it is in the interest of the utility to decrease the 

consumption peaks. 

Furthermore, utilities are under the pressure of 

producing more electricity from renewable sources, 

which means that they become more reliant on the 

external conditions (sun, wind, etc). Therefore, they want 

the energy consumption to adapt itself to the production.  

2.1.3 Aggregator 

The necessity to optimise the energy grid has led to the 

apparition of new actors that serve as intermediary 

between the end user and the utility. One company can 

play both the roles of aggregator and retailer, depending 

on the contract that it has with its clients.  

The aggregator role is to constitute a portfolio of users 

that can offer flexibility to the utility. The aggregator 

signs a contract with the end user to determine the 

conditions of the flexibility it can provide. This includes 

the type of action possible (e.g.: change of set points, 

turning off some equipment) and the related time 

constraint (e.g.: a certain number of hours during the year, 

not more than two hours in a raw). The end users are 

monetarily compensated for their flexibility.  

The aggregator then responds to the utility’s need for 

demand response by activating the flexibility in its 

portfolio.     

The objective of the aggregator is to be a mediator 

between the utility and the end-user. It makes his profit 

from the difference between the income it receives from 

the utility to provide flexibility and the compensation it 

pays its client.  

 

 

2.1.4 Retailer 

A retailer buys energy from the utility and sells it to the 

end user. Various companies can play the role of retailer. 

It can go from being a department of a utility company or 

an independent private company to be a municipality or 

an association of users. 

In the first case the objective would be to maximize 

profit through energy trading, while in the second case it 

is more likely to be about providing the best energy prices 

for the end users.   

2.2 Explicit demand response 

When the utility triggers a demand response event, there 

are two ways to obtain flexibility from the end user. The 

first one, called explicit demand response, is when there 

is a direct external control on the systems of the end user 

under conditions agreed in advance. This is usually done 

via the aggregator.  

In this scenario, the utility would ask the aggregator to 

provide a certain amount of flexibility, either by reducing 

or displacing the load of its clients. Based on the 

flexibility provided by its clients, the aggregator 

determines the best strategy to provide this flexibility. 

This can include a phase of negotiation both between the 

utility and the aggregator and between the aggregator and 

its clients. Using specific protocol and hardware [6], the 

aggregator sends direct commands to the client’s 

equipment. The utility rewards the aggregator for the 

flexibility and the aggregator passes down part of the 

remuneration to the clients that provided a change in their 

consumption.    

This type of DR is primarily applied to non-residential 

buildings where significant reduction in consumption can 

be achieved by turning-off or reducing the load of HVAC 

or lighting system with high power consumption. Explicit 

DR permits a more precise control on the load, because 

the aggregator has detailed information about its clients 

(building characteristics, habit, preferences) and has some 

degree of direct control over its clients’ consumption.  

2.3 Implicit demand response 

By opposition to explicit DR where the aggregator can 

control part of the end user load, implicit DR consists in 

asking for a change in consumption from the consumer 

but leaving them the choice to do it or not. One way to do 

this is through energy prices, where prices are high at time 

the consumption needs to be reduced and prices are low 

when there is an excess of energy to encourage load 

displacement. This can go from static peak/off-peak 

pricing to encourage the end user to use energy at night to 

dynamic pricing, adjusted to energy production in real 

time. This scenario involves the retailer, who would adapt 

prices based on the contract signed with the end-user. 

The utility sells energy at a previously fixed wholesale 

price. This price is published the day before and depends 

on a prevision of the cost of production and of global 

energy demand. The retailer buys electricity at its 
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wholesale price and will later modify such price before 

selling the energy to the end user, fixing the retail price. 

The retail price can be static (e.g.: time of use) or 

dynamic. In case of dynamic pricing, a mechanism such 

as a phone app can be used to send the variation of prices 

to the end user. There is also the possibility to automate 

some of decisions via connected equipment such as a 

smart thermostat that would change its set points 

depending on the energy price according to rules 

established by the end user.  

Implicit demand response through price signal rely on 

the economical concept of elasticity, which is the 

likelihood of the consumer to change behaviour because 

of a change in price under fixed circumstances. Correctly 

estimating elasticity to obtain the adequate response from 

the end user in one of the challenges of demand response, 

especially in the case of the dynamic pricing scheme [7]. 

Implicit demand response relies strongly on 

consumers behaviours. The degree of control is thus 

smaller. However, it opens the door to reach a larger 

consumer population as the barrier to enter the scheme is 

lower.  

This type of demand response is suitable both for 

commercial and residential buildings. In the case of 

dynamic prices for residential buildings, the 

implementation of some form of automation of the 

decision is suitable, as involvement is likely to decrease 

overtime if users must look for prices variation constantly.   

3 Method  

3.1 HOLISDER project 

In the framework of the H2020 program funded by the 

European Union, the HOLISDER project works on 

introducing a Holistic Demand Response Optimization 

Framework to reduce the total energy bill for the 

consumer and improve the electric network stability [8]. 

Existing technologies are brought together to create a 

framework that covers the entire demand response value 

chain. One of the key aspects of this framework is the 

definition of a common information model integrating 

existing standards (e.g: OpenADR) and bridging the gaps 

to create an interoperable solution for building demand 

response.  

The HOLISDER framework addresses both implicit 

and explicit demand response. In this paper, we will focus 

on the implicit demand response and in particular on how 

to send price signals to obtain flexibility.  

3.2 Energy Tariff emulator 

One of the elements of the HOLISDER framework is an 

energy tariff emulator, aimed at the retailer. The tariff 

emulator calculates the prices that will trigger the 

corresponding amount of elasticity to approach the ideal 

consumption curve.  

The energy tariff emulator uses historical and context 

(e.g. weather) data to predict the consumption of the 

retailer’s portfolio. Renewable generation is also 

considered. Based on elasticity profiles, the emulator 

calculates real time energy prices that will result in the 

consumption desired by the retailer. In a first estimation, 

the required consumption profiles are calculated based on 

the wholesale price, however the objective is for the 

retailer to have the freedom to input the profile that suits 

him, as other parameters can come in play.  

The tariff emulator will support three types of 

dynamic pricing rates: 

- Time of Use (also called dual tariffs): two time-

zones are defined – peak and off-peak, and the tariff for 

each of the zone is recalculated daily.  

- Critical Peak Pricing: the electricity price can be 

punctually increased to obtain energy reduction when a 

critical peak of consumption threatens the stability of the 

grid.  

- Real-Time Pricing: the customers are charged 

hourly (or half-hourly) with the price fluctuating based on 

the wholesale energy prices.   

In this paper, the focus in on the prediction of the total 

energy consumption of retailer’s portfolio. To simulate a 

retailer portfolio, the data set described in the following 

section is used.  

3.3 London case study 

Between November 2011 and February 2014, the Low 

Carbon London project recorded energy consumption 

from 5,567 London Households recruited as a 

representative sample of the Greater London population 

[9]. 

This openly available dataset contains half-hourly 

energy consumption (kW/hh), associated with a unique 

household identifier, the date and time and the CACI 

Acorn group of the household, a UK consumer 

classification.  

In 2013, a subset of 1100 end users have been applied 

a Dynamic Time of Use (dToU) energy tariff where the 

periods for three fixed tariffs (low, normal and high) were 

given a day ahead to analysis the benefit of flexible tariff 

for the grid [10]. Most time periods were set to normal, so 

the data to evaluate elasticity of the consumer from this 

data set is limited, but it is useful for energy prediction. 

All the data analysis was carried out by using the Python 

programming language [11]. 

3.4 End user consumption pattern analysis 

As a first step, the consumption pattern of the group of 

users was analysed. The objective is to identify different 

profiles of costumers that can be used at the time of 

predicting the consumption and elasticity. After an 

exploratory analysis to better understand the data, a series 

of variables were calculated to use for the classification. 

A PCA was carried out to sort out which variables are 

most relevant to model the consumption patterns. Based 

on these variables, a cluster analysis was carried out to 

determine several groups of consumers.  
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3.4.1 Exploratory data analysis of historic energy 
data  

During the exploratory analysis, it was observed that 

some users had incomplete data. Since the users with 

incomplete data was 108 out of the total of 5,567. They 

were eliminated of the data set, leaving the data of 5,459 

consumers.   

Time series of a sample of those users were analysed 

to get a preliminary understanding of the consumption 

patterns and the following observations were made:   

- First, there are often peaks in consumption during 

the 5am-10am and 17am-21am intervals. Some 

consumers also have a peak of consumption around noon.  

- Moreover, there is a certain periodicity in the 

consumption patterns, which will help to predict the 

demand in Section 4.3.  

- However, the energy consumption cycle is not 

stationary over the year and a correction factor will need 

to be applied to take this into account, in particular the 

winter consumption is higher than the summer 

consumption. 

3.4.2 Principal component analysis   

The first step to perform the classification is to identify 

the variables that are the best to explain the users’ 

consumption. A first set of variables were calculated from 

the energy consumption to help identify different 

consumption behaviour. Those variables consist in 

calculations from the energy consumption on various time 

intervals. For each day, four intervals are considered: 

0am-8am, 8am-8pm, 8pm-12pm, and 12am-12pm. For 

each of these intervals, calculations are carried out on the 

entire period, the weekday and the weekend days. The 

average on the entire period and on the weekend is also 

considered.  

The average energy consumption for each of these 

intervals is evaluated for each user over the 2-year period 

of the dataset. The standard deviation from each interval 

compared to the average over the entire period is also 

calculated, as the variations in the consumption is as 

interesting as the value itself. This results in 24 variables 

to explain the consumption behaviour. 

This set of variables was not able to satisfactorily 

explain the data. To improve this, a new set of variables 

was calculated to better capture the variation over each 

interval. The standard deviation of each interval compared 

to the interval average of each day was calculated. These 

standard deviations were then averaged and the standard 

deviation over the period was also calculated, created two 

new variables for each interval to replace the standard 

deviation calculated before.  

The correlation between those variables was then 

analyzed. Weekly means and standard deviation were 

removed as they provided nearly the same information as 

the mean values split between weekend and weekdays. 

The PCA was carried on the remaining variables.  

 

 

3.4.3 CLUSTER analysis 

A clustering analysis was then carried out to identify 

groups of users with similar consumptions. The analysis 

used the variables identified by the PCA. A K-means 

method using Lloyd’s algorithm which aims to minimize 

the within-cluster sum of squared criterion is used [12].  

To get an insight of the number of groups to use for 

the cluster analysis, a hierarchical clustering algorithm 

was used, where the data points are grouped based on the 

distance between them and have been represented on a 

dendrogram (Figure 1). 20 is identified as a discriminating 

distance suggesting classifying the consumers in three 

groups.      

 
Fig. 1. Hierarchical clustering of users  

 

Based on the dendrogram analysis the hierarchical 

clustering algorithm was run again with a maximum 

number of clusters between 2 and 5 and using five 

different methods and four different distance metrics to 

determine which one gives the best results. During the 

tests, an outlier consumer, whose consumption is very 

different from the rest, was identified and removed to 

improve the clustering results. The best result is shown on 

Figure 2 and was obtained with the complete method (at 

each step, the two clusters which are separated by the 

shortest distance are combined) and with the Manhattan 

distance (sum of the absolute differences of the 

coordinates of the points, as seen in equation (1)).  

           ��������, 
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���           (1) 

 
Fig. 2. Final CLUSTER with 3 different groups of consumers  
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3.5 Energy demand behaviour prediction 

The next step is to develop a model to predict the energy 

consumption of the users. Because this prediction is 

aimed at the retailer, we are interested in the aggregated 

consumption. A Random Forest (RF) method is used. 

Random Forest can be used for classification and 

regression. The algorithm is based on decision trees. It 

creates random subsets from the data. With each subset, it 

creates a decision tree. Different variations of the main 

classifier are created. In the case of classification, the most 

repeated output in the individual trees is the result. In the 

case of regression, which is the case in this paper, the 

result is the mean of the outputs of each individual tree 

[13].  

To train the RF model, two types of data are used: 

- Historical energy consumption  

- Variables linked to the date and time (seasons, day 

of the week, if it is a weekend or a weekday, hour of the 

day).   

The model was trained using 85% of the 40,403 data 

entries, while the rest was reserved for testing purposes. 

A 10-fold cross validation, where the model is trained on 

9 parts of the dataset and tested on the 10th part, repeating 

this on the 10 possible combinations, was used to test the 

quality of the model.   

For the actual prediction, the train model was used 

with the consumption at the time to predict during the 7 

preceding days.  

4 Results 

In this section, we describe the results of the analysis 

described in Section 3. 

4.1 Classification of consumer profiles 

4.1.1 Principle component analysis 

Figure 3 shows the result of the PCA after adjusting the variable 

as described in Section 3.4.2.    

 

 
Fig. 3. PCA analysis results for the 6 first components 

 

The model is considered sufficiently determined when 

the variables explain more than 95% of the variance. This 

is achieved with 6 variables. The two first variables will 

help to visualise the clusters.  

4.1.2 Cluster analysis 

The CLUSTER analysis identifies 3 groups of consumers. 

The consumers the closest to the cluster centre of each 

group were extracted to identify the main consumption’s 

characteristics of each group.  

Members classified in Group 1 have an energy 

consumption average much higher than the other groups 

for each period. The average over the total period is 1.15 

kWh/hh for group 1 versus 0.42 kWh/hh for group 2 and 

0.21 kWh/hh for group 3. Group 1 also has the highest 

standard deviation values.   

Group 2’s consumption is higher at night for 

weekdays. It has a higher consumption during the 8pm-

0pm and much higher during the 0am-8am period than for 

the group 3. During the day group 2 and 3 show similar 

behaviours. During the weekend, the group 2 shows a 

higher energy consumption only for the 0am-8am and not 

for the 8pm-0pm period anymore.  

Group 3 has, in average, a much lower standard 

deviation than group 2. Their energy consumption is more 

constant over each period. Group 3 is representative of a 

bigger number of users.   

4.1.3 Classifier  

To be able to use the results above for predicting 

individual energy consumption, a classifier is built to sort 

users between the three identified groups. A tree classifier 

is used as represented on Figure 4.  

 
Fig. 4. Decision tree to classify the users according to their 

consumption 

4.2 Prediction of the consumption 

This section presents the results linked with energy 

consumption prediction. Figure 5 shows the error of the 

RF model for each of the data point of the 2 year-period. 

The coefficient of determination (R2) of the model is 0.66.  
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Fig. 5. Error of Random Forest model  

 

An R2 of 0.66 might seem low, but as it can be seen in 

Figure 6, this is sufficient to detects the peaks and the 

valleys of the aggregated energy consumption of the 

portfolio of end users. This information is crucial for the 

retailer at the moment of planning tariffs based on his 

desired consumption curve. 

 
 

Fig 6. Prediction with RF model compared to real data and error 

of the model.  

5 Discussion  

Demand response can lead the way to change the energy 

grid paradigm and is necessary for a higher integration of 

renewable energy in the energy mix. Specific DR schemes 

need to be implemented to activate the DR potential of 

buildings. One option is to send price signal to encourage 

users to reduce or displace their consumption. In this 

paper, the concept of an energy tariff emulator to assist 

the Retail in providing the right prices signals is 

introduced. The energy tariff emulator rests on three 

elements: the prediction of the consumption from their 

client portfolio, the prediction of the elasticity of the 

portfolio, and the ideal consumption curve. 

In this paper, a machine learning algorithm based on 

the Random Forest method was developed based on a 2 

years dataset from the Low Carbon London project. The 

median error of prediction was 3% and peak and valley in 

consumption are correctly predicted. Further work to 

improve the precision of the model will include using 

weather as an additional parameter of the model and 

testing the replicability of the method on another dataset. 

A cluster analysis was also carried out to understand 

the consumption patter of the user. Three groups were 

identified with group 3 being majority (5795 users). The 

next step will be to define the elasticity of the users in this 

clusters and possibly divide further group based on their 

response to prices signals.    

Elasticity of the users is difficult to determine with 

precision, because there is a lack of available data. This 

can be partly explained by the limitation of the current 

regulations, that mean price signals are often simulation 

(i.e.: consumers are sent artificial price signals that don’t 

correspond to their real energy bills). This creates a bias 

in the data especially regarding the consumer 

engagement. There is a need for a large scale and long-

term dataset to evaluate users’ elasticity.   

6 Conclusion  

In this paper, a tariff emulator to activate demand 

response potential of the building sector was presented. In 

particular, a model for classifying the individual 

consumers and one for predicting the aggregated 

consumption of a portfolio of consumers were developed. 

The clustering model identified three group of consumers, 

with one of them being applicable to the majority of users. 

The predictive model using a Random Forest machine 

learning algorithm showed satisfactory prediction of 

peaks and valleys with a R2 of 0.66.  
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