3,043 research outputs found

    User Transmit Power Minimization through Uplink Resource Allocation and User Association in HetNets

    Full text link
    The popularity of cellular internet of things (IoT) is increasing day by day and billions of IoT devices will be connected to the internet. Many of these devices have limited battery life with constraints on transmit power. High user power consumption in cellular networks restricts the deployment of many IoT devices in 5G. To enable the inclusion of these devices, 5G should be supplemented with strategies and schemes to reduce user power consumption. Therefore, we present a novel joint uplink user association and resource allocation scheme for minimizing user transmit power while meeting the quality of service. We analyze our scheme for two-tier heterogeneous network (HetNet) and show an average transmit power of -2.8 dBm and 8.2 dBm for our algorithms compared to 20 dBm in state-of-the-art Max reference signal received power (RSRP) and channel individual offset (CIO) based association schemes

    Weighted proportional fairness and pricing based resource allocation for uplink offloading using IP flow mobility

    Get PDF
    Mobile data offloading has been proposed as a solution for the network congestion problem that is continuously aggravating due to the increase in mobile data demand. However, the majority of the state-of-the-art is focused on the downlink offloading, while the change of mobile user habits, like mobile content creation and uploading, makes uplink offloading a rising issue. In this work we focus on the uplink offloading using IP Flow Mobility (IFOM). IFOM allows a LTE mobile User Equipment (UE) to maintain two concurrent data streams, one through LTE and the other through WiFi access technology, that presents uplink limitations due to the inherent fairness design of IEEE 802.11 DCF by employing the CSMA/CA scheme with a binary exponential backoff algorithm. In this paper, we propose a weighted proportionally fair bandwidth allocation algorithm for the data volume that is being offloaded through WiFi, in conjunction with a pricing-based rate allocation for the rest of the data volume needs of the UEs that are transmitted through the LTE uplink. We aim to improve the energy efficiency of the UEs and to increase the offloaded data volume under the concurrent use of access technologies that IFOM allows. In the weighted proportionally fair WiFi bandwidth allocation, we consider both the different upload data needs of the UEs, along with their LTE spectrum efficiency and propose an access mechanism that improves the use of WiFi access in uplink offloading. In the LTE part, we propose a two-stage pricing-based rate allocation under both linear and exponential pricing approaches, aiming to satisfy all offloading UEs regarding their LTE uplink access. We theoretically analyse the proposed algorithms and evaluate their performance through simulations. We compare their performance with the 802.11 DCF access scheme and with a state-of-the-art access algorithm under different number of offloading UEs and for both linear and exponential pricing-based rate allocation for the LTE uplink. Through the evaluation of energy efficiency, offloading capabilities and throughput performance, we provide an improved uplink access scheme for UEs that operate with IFOM for uplink offloading.Peer ReviewedPreprin

    Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mm-wave) communications are considered as a promising technology for the fifth generation mobile networks. Mm-wave has the potential to provide multiple gigabit data rate due to the broad spectrum. Unfortunately, additional free space path loss is also caused by the high carrier frequency. On the other hand, mm-wave signals are sensitive to obstacles and more vulnerable to blocking effects. To address this issue, highly directional narrow beams are utilized in mm-wave networks. Additionally, device-to-device (D2D) users make full use of their proximity and share uplink spectrum resources in HCNs to increase the spectrum efficiency and network capacity. Towards the caused complex interferences, the combination of D2D-enabled HCNs with small cells densely deployed and mm-wave communications poses a big challenge to the resource allocation problems. In this paper, we formulate the optimization problem of D2D communication spectrum resource allocation among multiple micro-wave bands and multiple mm-wave bands in HCNs. Then, considering the totally different propagation conditions on the two bands, a heuristic algorithm is proposed to maximize the system transmission rate and approximate the solutions with sufficient accuracies. Compared with other practical schemes, we carry out extensive simulations with different system parameters, and demonstrate the superior performance of the proposed scheme. In addition, the optimality and complexity are simulated to further verify effectiveness and efficiency.Comment: 13 pages, 11 figures, IEEE Transactions on Vehicular Technolog

    Leveraging intelligence from network CDR data for interference aware energy consumption minimization

    Get PDF
    Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo
    • …
    corecore