1,069 research outputs found

    Cross-Layer Optimization of Fast Video Delivery in Cache-Enabled Relaying Networks

    Full text link
    This paper investigates the cross-layer optimization of fast video delivery and caching for minimization of the overall video delivery time in a two-hop relaying network. The half-duplex relay nodes are equipped with both a cache and a buffer which facilitate joint scheduling of fetching and delivery to exploit the channel diversity for improving the overall delivery performance. The fast delivery control is formulated as a two-stage functional non-convex optimization problem. By exploiting the underlying convex and quasi-convex structures, the problem can be solved exactly and efficiently by the developed algorithm. Simulation results show that significant caching and buffering gains can be achieved with the proposed framework, which translates into a reduction of the overall video delivery time. Besides, a trade-off between caching and buffering gains is unveiled.Comment: 7 pages, 4 figures; accepted for presentation at IEEE Globecom, San Diego, CA, Dec. 201

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Take one for the team: on the time efficiency of application-level buffer-aided relaying in edge cloud communication

    Get PDF
    [Abstract] Background Adding buffers to networks is part of the fundamental advance in data communication. Since edge cloud computing is based on the heterogeneous collaboration network model in a federated environment, it is natural to consider buffer-aided data communication for edge cloud applications. However, the existing studies generally pursue the beneficial features of buffering at a cost of time, not to mention that many investigations are focused on lower-layer data packets rather than application-level communication transactions. Aims Driven by our argument against the claim that buffers “can introduce additional delay to the communication between the source and destination”, this research aims to investigate whether or not (and if yes, to what extent) the application-level buffering mechanism can improve the time efficiency in edge-cloud data transmissions. Method To collect empirical evidence for the theoretical discussion, we built up a testbed to simulate a remote health monitoring system, and conducted both experimental and modeling investigations into the first-in-first-served (FIFS) and buffer-aided data transmissions at a relay node in the system. Results An empirical inequality system is established for revealing the time efficiency of buffer-aided edge cloud communication. For example, given the reference of transmitting the 11th data entity in the FIFS manner, the inequality system suggests buffering up to 50 data entities into one transmission transaction on our testbed. Conclusions Despite the trade-off benefits (e.g., energy efficiency and fault tolerance) of buffering data, our investigation argues that the buffering mechanism can also speed up data transmission under certain circumstances, and thus it would be worth taking data buffering into account when designing and developing edge cloud applications even in the time-critical context.Chilean National Research and Development Agency; 11180905Ministerio de Ciencia e Innovación de España e European Regional Development Fund; RTC-2017-5908-7Ministerio de Ciencia e Innovación de España e European Regional Development Fund; PID2019-105221RB-C41Xunta de Galicia e European Regional Development Fund; ED431C 2017/58Xunta de Galicia e European Regional Development Fund; ED431G 2019/0

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed

    A Survey on Adaptive Multimedia Streaming

    Get PDF
    Internet was primarily designed for one to one applications like electronic mail, reliable file transfer etc. However, the technological growth in both hardware and software industry have written in unprecedented success story of the growth of Internet and have paved the paths of modern digital evolution. In today’s world, the internet has become the way of life and has penetrated in its every domain. It is nearly impossible to list the applications which make use of internet in this era however, all these applications are data intensive and data may be textual, audio or visual requiring improved techniques to deal with these. Multimedia applications are one of them and have witnessed unprecedented growth in last few years. A predominance of that is by virtue of different video streaming applications in daily life like games, education, entertainment, security etc. Due to the huge demand of multimedia applications, heterogeneity of demands and limited resource availability there is a dire need of adaptive multimedia streaming. This chapter provides the detail discussion over different adaptive multimedia streaming mechanism over peer to peer network
    corecore