4 research outputs found

    Wireless Channel Modeling For Networks On Chips

    Get PDF
    The advent of integrated circuit (chip) multiprocessors (CMPs) combined with the continuous reduction in device physical size (technology scaling) to the sub-nanometer regime will result in an exponential increase in the number of processing cores that can be integrated within a single chip. Today’s CMPs already support tens to low hundreds of cores and both industry and academic roadmaps project that future chips will have thousands of cores. Therefore, while there are open questions on how to harness the computing power offered by CMPs, the design of power-efficient and compact on-chip interconnection networks that connects cores, caches and memory controllers has become imperative for sustaining the performance of CMPs. As the limited scalability of bus-based networks degrades performance by reducing data rates and increasing latency, the Network-on-Chip (NoC) design paradigm has gained momentum, where a network of routers and links connects all the cores. However, power consumption of NoCs is a significant challenge that should be addressed to capitalize on the scaling advantages of multicores. Also, improvements in metal wire characteristics will no longer satisfy the power and performance requirements of on-chip communication. One approach to continue the performance improvements is to integrate new emerging technologies into the electronic design flow such as wireless/RF technologies, since they provide unique advantages that make them desirable in a NoC environment. First, wireless technologies are ubiquitous and offer a wide range of options in communication, and there exists a vast body of knowledge for the design and implementation of wireless chipsets using RF-CMOS technology. Second, wireless communication, unlike wired transmission, can be omnidirectional, which can facilitate one-hop unicast, multicast, and broadcast communication that can result in a reduction in power consumption while allowing for faster communication. Third, wireless communication can increase the communication data rate by the combination of Frequency Division Multiplexing (FDM) and Time Division Multiplexing (TDM) (and in the future, potentially spatial division multiplexing (SDM)). Therefore, Wireless NoC (WiNoC) interconnects have recently emerged as a viable solution to mitigate power concerns in the short to medium term while still providing competitive performance metrics, i.e., low power consumption, tens of Gbps data rates, and minimal circuit area (or volume) within the chip. Worth noting is that wireless links are not envisioned as replacing all wired links, but rather as augmenting the wired interconnection network. In this dissertation, we employ simulations in HFSS from Ansys® to present accurate wireless channel models for a realistic WiNoC environment. We investigate the performance of these models with different types of narrowband and wideband antennas. This entails estimation of the scattering parameters for the channels between multiple antenna elements in the WiNoC, from which we derive channel transfer functions and channel impulse responses. Using these results, we can estimate the throughput of the various WiNoC links, and this allows us to design effective multiple access (MA) schemes via FDM and TDM. For these MA schemes, we provide estimates of maximal throughput. To further the feasibility study, we investigate the performance of a simple binary transmission scheme--On-Off Keying (OOK)--through the resulting dispersive channels, which can facilitate one-hop unicast, multicast, and broadcast communication that can result in a reduction in power consumption while allowing for faster communication. Our investigation of the performance of On-Off Keying modulation (OOK) also includes an analytical expression for bit error ratio (BER) that can be evaluated numerically. This enables us to provide the equalization requirements needed to achieve our target BERs. Finally, we provide recommendations for WiNoC design and future tasks related to this research

    System Level Analysis And Design For Wireless Inter-Chip Interconnection Communication Systems By Applying Advanced Wireless Communication Technologies

    Get PDF
    As the dramatic development of high speed integrated circuits has progressed, the 60 GHz silicon technology has been introduced to enable much faster computer systems and their corresponding applications. However, when signals are propagating at 60 GHz or higher frequencies on a PCB (Printed Circuit Board), the crosstalk among signal buses and devices, trace losses, and introduced parasitic capacitance and inductance between high density traces, become significant and may be severe enough such that the inter-chip communications will not be able to meet computer system signal specifications. High speed circuit signal integrity researchers in both electronic industries and academia have explored various methodologies to resolve these high frequency issues. Moreover, Intel is introducing Ultra Path Interconnect (UPI) for multi-core server systems, which demands more than 2.44 Tbps data rate between two CPUs, and 1.5 Tbps data rate for PCIe channel operation. Recently, the concept of the wireless inter/intra-chip interconnection (WIIC) technology was introduced [19, 23] for solving high frequency signal integrity issues. Here this dissertation mainly focuses on the inter-chip case while still using the WIIC designation for generality. Various WIIC technologies have been presented in the literature, which have focused on the investigations on Ultra Wide-Band (UWB), propagation channels, modulations, antennas, and power controls and interference. However, not much research has focused on a system level design, which includes the lowest two layers of the communication protocol in a WIIC system, namely, the physical, and data link layers. Also, the previously published literature has rarely reached the data rate at 100 Gbps or higher, and none of the prior research has obtained a spectrum utilization ratio of 4 bit/Hz or greater. In addition, currently existing research has not fully taken advantage of advanced and matured wireless communication technologies such as Orthogonal Frequency Division Multiplexing (OFDM), high order modulation, and Multiple-Input/Multiple-Output (MIMO) systems for increasing data rates and improving reliability, although the use of UWB [29], conventional FDMA or TDMA [39], and binary modulations including Binary Phase Shift Keying (BPSK) [22], On-Off Keying (OOK) [31], and Amplitude Shift Keying (ASK) [35] have been studied in previous research. In this dissertation, a complete WIIC system and a representative WIIC channel model have been developed by taking full advantages of advanced wireless communication techniques. First, this research has analyzed the potential of higher-order modulation, error correction, OFDM, and channel coding to the WIIC setting. Although MIMO, interleaving and scrambling are also analyzed but not included in the current version of the proposed WIIC system, they could be featured in hypothetically ideal future research to determine their potential benefits. Second, the performance of a proposed WIIC system has been analyzed in order to reach 100 Gbps data rate. Third, a 60 GHz WIIC channel based on metamaterial Electronic Band Gap (EBG) absorbers has been designed and analyzed using the numerical electromagnetics solver HFSS® and this EBG is integrated into the representative WIIC channel. Moreover, the impulse response of the WIIC channel is numerically extracted and is used for the system validation and testing. Furthermore, the system has been simulated with the WIIC channel and the wired PCB channel. It has been found that, the Bit Error Rate (BER) performance of the proposed WIIC channel is close to that of an AWGN channel with FEC, and much better than the AWGN channel without FEC, which means that the designed WIIC system and channel work properly within the frequency band centered at 60 GHz, while the wired PCB channel is almost cut off at 15 GHz or higher for the cases investigated. With only five or six layers on a PCB board, the WIIC system is able to provide 384 Gbps data rate theoretically with 12 GHz bandwidth, while the wired PCB counterpart needs more than 20 layers in order to avoid severe SI problems and to properly layout the Tbps channels. The current version of the WIIC system is able to provide 24 Gbps data rate with the bandwidth of 12 GHz using OFDM and QPSK
    corecore