12,263 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationPortable electronic devices will be limited to available energy of existing battery chemistries for the foreseeable future. However, system-on-chips (SoCs) used in these devices are under a demand to offer more functionality and increased battery life. A difficult problem in SoC design is providing energy-efficient communication between its components while maintaining the required performance. This dissertation introduces a novel energy-efficient network-on-chip (NoC) communication architecture. A NoC is used within complex SoCs due it its superior performance, energy usage, modularity, and scalability over traditional bus and point-to-point methods of connecting SoC components. This is the first academic research that combines asynchronous NoC circuits, a focus on energy-efficient design, and a software framework to customize a NoC for a particular SoC. Its key contribution is demonstrating that a simple, asynchronous NoC concept is a good match for low-power devices, and is a fruitful area for additional investigation. The proposed NoC is energy-efficient in several ways: simple switch and arbitration logic, low port radix, latch-based router buffering, a topology with the minimum number of 3-port routers, and the asynchronous advantages of zero dynamic power consumption while idle and the lack of a clock tree. The tool framework developed for this work uses novel methods to optimize the topology and router oorplan based on simulated annealing and force-directed movement. It studies link pipelining techniques that yield improved throughput in an energy-efficient manner. A simulator is automatically generated for each customized NoC, and its traffic generators use a self-similar message distribution, as opposed to Poisson, to better match application behavior. Compared to a conventional synchronous NoC, this design is superior by achieving comparable message latency with half the energy

    Doctor of Philosophy

    Get PDF
    dissertationThe bandwidth requirement for each link on a network-on-chip (NoC) may differ based on topology and traffic properties of the IP cores. Available bandwidth on an asynchronous NoC link will also vary depending on the wire length between sender and receiver. This work explores the benefit to NoC performance, area, and energy when this property is used to optimize bandwidth on specific links based on its bandwidth required by a target SoC design. Three asynchronous routers were designed for implementing of asynchronous NoCs. Simple routing scheme and single-flit packet format lead to performance- and area-efficient router designs. Their performance was evaluated in consideration of link wire delay. Comprehensive analysis of pipeline latch insertion in asynchronous communication links is performed in regard to link bandwidth. Optimal placement of pipeline latch for maximizing benefit to increase of bandwidth is described. Specific methods are proposed for performance, area and energy optimization, respectively. Performance optimization is achieved by increasing bandwidth of high trafficked and high utilized links in an NoC, as inserting pipeline latches in those links. Through decrease of bandwidth of links with low traffic and low utilization by halving data-path width, reduction of wire area of an NoC is accomplished. Energy optimization is performed using wide spacing between wires in links with high energy consumption. An analytical model for asynchronous link bandwidth estimation is presented. It is utilized to deploy NoC optimization methods as identifying adequate links for each optimization method. Energy and latency characteristics of an asynchronous NoC are compared to a similarly-designed synchronous NoC. The results indicate that the asynchronous network has lower energy, and link-specific bandwidth optimization has improved NoC performance. Evaluation of proposed optimization methods by employing to an asynchronous NoC shows achievements of performance enhancement, wire area reduction and wire energy saving

    Dynamic Voltage and Frequency Scaling for Wireless Network-on-Chip

    Get PDF
    Previously, research and design of Network-on-Chip (NoC) paradigms where mainly focused on improving the performance of the interconnection networks. With emerging wide range of low-power applications and energy constrained high-performance applications, it is highly desirable to have NoCs that are highly energy efficient without incurring performance penalty. In the design of high-performance massive multi-core chips, power and heat have become dominant constrains. Increased power consumption can raise chip temperature, which in turn can decrease chip reliability and performance and increase cooling costs. It was proven that Small-world Wireless Network-on-Chip (SWNoC) architecture which replaces multi-hop wire-line path in a NoC by high-bandwidth single hop long range wireless links, reduces the overall energy dissipation when compared to wire-line mesh-based NoC architecture. However, the overall energy dissipation of the wireless NoC is still dominated by wire-line links and switches (buffers). Dynamic Voltage Scaling is an efficient technique for significant power savings in microprocessors. It has been proposed and deployed in modern microprocessors by exploiting the variance in processor utilization. On a Network-on-Chip paradigm, it is more likely that the wire-line links and buffers are not always fully utilized even for different applications. Hence, by exploiting these characteristics of the links and buffers over different traffic, DVFS technique can be incorporated on these switches and wire-line links for huge power savings. In this thesis, a history based DVFS mechanism is proposed. This mechanism uses the past utilization of the wire-line links & buffers to predict the future traffic and accordingly tune the voltage and frequency for the links and buffers dynamically for each time window. This mechanism dynamically minimizes the power consumption while substantially maintaining a high performance over the system. Performance analysis on these DVFS enabled Wireless NoC shows that, the overall energy dissipation is improved by around 40% when compared Small-world Wireless NoCs

    Robust and Traffic Aware Medium Access Control Mechanisms for Energy-Efficient mm-Wave Wireless Network-on-Chip Architectures

    Get PDF
    To cater to the performance/watt needs, processors with multiple processing cores on the same chip have become the de-facto design choice. In such multicore systems, Network-on-Chip (NoC) serves as a communication infrastructure for data transfer among the cores on the chip. However, conventional metallic interconnect based NoCs are constrained by their long multi-hop latencies and high power consumption, limiting the performance gain in these systems. Among, different alternatives, due to the CMOS compatibility and energy-efficiency, low-latency wireless interconnect operating in the millimeter wave (mm-wave) band is nearer term solution to this multi-hop communication problem. This has led to the recent exploration of millimeter-wave (mm-wave) wireless technologies in wireless NoC architectures (WiNoC). To realize the mm-wave wireless interconnect in a WiNoC, a wireless interface (WI) equipped with on-chip antenna and transceiver circuit operating at 60GHz frequency range is integrated to the ports of some NoC switches. The WIs are also equipped with a medium access control (MAC) mechanism that ensures a collision free and energy-efficient communication among the WIs located at different parts on the chip. However, due to shrinking feature size and complex integration in CMOS technology, high-density chips like multicore systems are prone to manufacturing defects and dynamic faults during chip operation. Such failures can result in permanently broken wireless links or cause the MAC to malfunction in a WiNoC. Consequently, the energy-efficient communication through the wireless medium will be compromised. Furthermore, the energy efficiency in the wireless channel access is also dependent on the traffic pattern of the applications running on the multicore systems. Due to the bursty and self-similar nature of the NoC traffic patterns, the traffic demand of the WIs can vary both spatially and temporally. Ineffective management of such traffic variation of the WIs, limits the performance and energy benefits of the novel mm-wave interconnect technology. Hence, to utilize the full potential of the novel mm-wave interconnect technology in WiNoCs, design of a simple, fair, robust, and efficient MAC is of paramount importance. The main goal of this dissertation is to propose the design principles for robust and traffic-aware MAC mechanisms to provide high bandwidth, low latency, and energy-efficient data communication in mm-wave WiNoCs. The proposed solution has two parts. In the first part, we propose the cross-layer design methodology of robust WiNoC architecture that can minimize the effect of permanent failure of the wireless links and recover from transient failures caused by single event upsets (SEU). Then, in the second part, we present a traffic-aware MAC mechanism that can adjust the transmission slots of the WIs based on the traffic demand of the WIs. The proposed MAC is also robust against the failure of the wireless access mechanism. Finally, as future research directions, this idea of traffic awareness is extended throughout the whole NoC by enabling adaptiveness in both wired and wireless interconnection fabric
    • …
    corecore