24,052 research outputs found

    Energy efficiency optimization with energy harvesting using harvest-use approach

    Get PDF
    Energy harvesting is emerging as a promising approach to improve the energy efficiency (EE) and to extend the life of wireless networks. This paper focuses on energy-efficient transmission power allocation techniques for a point-to-point communication channel, equipped with a fixed-power battery, as well as a harvest-use battery. Using the fact that the harvested energy does not consume from the fixed battery, EE is formulated as the ratio of Shannon limit (as a function of the sum of the power consumed from the fixed battery and the harvest-use battery) to the sum of the circuit power and power consumed from the fixed battery. For the considered energy harvest-use technique, a time switching approach is used that in each frame, the node harvests energy for a percentage of frame time and transmits data for the rest of the frame time. Using the fact that the formulated EE is a quasi-concave function in transmission power, we use fractional programming to obtain the optimal power level, Pu, and in-turn, the maximum achievable EE. Analytical derivations show that the maximum achievable EE monotonically increases with harvested power, whereas, Pu monotonically decreases with it. Simulation results show the effects of harvested energy, fixed-battery power limit, and time switching rate on the maximum achievable EE

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Efficient energy management for the internet of things in smart cities

    Get PDF
    The drastic increase in urbanization over the past few years requires sustainable, efficient, and smart solutions for transportation, governance, environment, quality of life, and so on. The Internet of Things offers many sophisticated and ubiquitous applications for smart cities. The energy demand of IoT applications is increased, while IoT devices continue to grow in both numbers and requirements. Therefore, smart city solutions must have the ability to efficiently utilize energy and handle the associated challenges. Energy management is considered as a key paradigm for the realization of complex energy systems in smart cities. In this article, we present a brief overview of energy management and challenges in smart cities. We then provide a unifying framework for energy-efficient optimization and scheduling of IoT-based smart cities. We also discuss the energy harvesting in smart cities, which is a promising solution for extending the lifetime of low-power devices and its related challenges. We detail two case studies. The first one targets energy-efficient scheduling in smart homes, and the second covers wireless power transfer for IoT devices in smart cities. Simulation results for the case studies demonstrate the tremendous impact of energy-efficient scheduling optimization and wireless power transfer on the performance of IoT in smart cities
    • …
    corecore