17,836 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Transmission Power Scheduling for Energy Harvesting Sensor in Remote State Estimation

    Get PDF
    We study remote estimation in a wireless sensor network. Instead of using a conventional battery-powered sensor, a sensor equipped with an energy harvester which can obtain energy from the external environment is utilized. We formulate this problem into an infinite time-horizon Markov decision process and provide the optimal sensor transmission power control strategy. In addition, a sub-optimal strategy which is easier to implement and requires less computation is presented. A numerical example is provided to illustrate the implementation of the sub-optimal policy and evaluation of its estimation performance.Comment: Extended version of article to be published in the Proceedings of the 19th IFAC World Congress, 201

    Update or Wait: How to Keep Your Data Fresh

    Full text link
    In this work, we study how to optimally manage the freshness of information updates sent from a source node to a destination via a channel. A proper metric for data freshness at the destination is the age-of-information, or simply age, which is defined as how old the freshest received update is since the moment that this update was generated at the source node (e.g., a sensor). A reasonable update policy is the zero-wait policy, i.e., the source node submits a fresh update once the previous update is delivered and the channel becomes free, which achieves the maximum throughput and the minimum delay. Surprisingly, this zero-wait policy does not always minimize the age. This counter-intuitive phenomenon motivates us to study how to optimally control information updates to keep the data fresh and to understand when the zero-wait policy is optimal. We introduce a general age penalty function to characterize the level of dissatisfaction on data staleness and formulate the average age penalty minimization problem as a constrained semi-Markov decision problem (SMDP) with an uncountable state space. We develop efficient algorithms to find the optimal update policy among all causal policies, and establish sufficient and necessary conditions for the optimality of the zero-wait policy. Our investigation shows that the zero-wait policy is far from the optimum if (i) the age penalty function grows quickly with respect to the age, (ii) the packet transmission times over the channel are positively correlated over time, or (iii) the packet transmission times are highly random (e.g., following a heavy-tail distribution)

    Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    Full text link
    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as to achieve systemwide reliability. More specifically, when the opportunistic users are non-persistent, i.e., a subset of them leave the power market when the real-time price is not acceptable, we obtain closedform solutions to the two-level scheduling problem. For the persistent case, we treat the scheduling problem as a multitimescale Markov decision process. We show that it can be recast, explicitly, as a classic Markov decision process with continuous state and action spaces, the solution to which can be found via standard techniques. We conclude that the proposed multi-scale dispatch and scheduling with real-time pricing can effectively address the volatility and uncertainty of wind generation and energy demand, and has the potential to improve the penetration of renewable energy into smart grids.Comment: Submitted to IEEE Infocom 2011. Contains 10 pages and 4 figures. Replaces the previous arXiv submission (dated Aug-23-2010) with the same titl

    Exact finite approximations of average-cost countable Markov Decision Processes

    Full text link
    For a countable-state Markov decision process we introduce an embedding which produces a finite-state Markov decision process. The finite-state embedded process has the same optimal cost, and moreover, it has the same dynamics as the original process when restricting to the approximating set. The embedded process can be used as an approximation which, being finite, is more convenient for computation and implementation.Comment: Submitted to Automatic

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201
    corecore