4,051 research outputs found

    Recognition of Harmonic Sounds in Polyphonic Audio using a Missing Feature Approach: Extended Report

    Get PDF
    A method based on local spectral features and missing feature techniques is proposed for the recognition of harmonic sounds in mixture signals. A mask estimation algorithm is proposed for identifying spectral regions that contain reliable information for each sound source and then bounded marginalization is employed to treat the feature vector elements that are determined as unreliable. The proposed method is tested on musical instrument sounds due to the extensive availability of data but it can be applied on other sounds (i.e. animal sounds, environmental sounds), whenever these are harmonic. In simulations the proposed method clearly outperformed a baseline method for mixture signals

    Studies in Signal Processing Techniques for Speech Enhancement: A comparative study

    Get PDF
    Speech enhancement is very essential to suppress the background noise and to increase speech intelligibility and reduce fatigue in hearing. There exist many simple speech enhancement algorithms like spectral subtraction to complex algorithms like Bayesian Magnitude estimators based on Minimum Mean Square Error (MMSE) and its variants. A continuous research is going and new algorithms are emerging to enhance speech signal recorded in the background of environment such as industries, vehicles and aircraft cockpit. In aviation industries speech enhancement plays a vital role to bring crucial information from pilot’s conversation in case of an incident or accident by suppressing engine and other cockpit instrument noises. In this work proposed is a new approach to speech enhancement making use harmonic wavelet transform and Bayesian estimators. The performance indicators, SNR and listening confirms to the fact that newly modified algorithms using harmonic wavelet transform indeed show better results than currently existing methods. Further, the Harmonic Wavelet Transform is computationally efficient and simple to implement due to its inbuilt decimation-interpolation operations compared to those of filter-bank approach to realize sub-bands

    Glottal Source Cepstrum Coefficients Applied to NIST SRE 2010

    Get PDF
    Through the present paper, a novel feature set for speaker recognition based on glottal estimate information is presented. An iterative algorithm is used to derive the vocal tract and glottal source estimations from speech signal. In order to test the importance of glottal source information in speaker characterization, the novel feature set has been tested in the 2010 NIST Speaker Recognition Evaluation (NIST SRE10). The proposed system uses glottal estimate parameter templates and classical cepstral information to build a model for each speaker involved in the recognition process. ALIZE [1] open-source software has been used to create the GMM models for both background and target speakers. Compared to using mel-frequency cepstrum coefficients (MFCC), the misclassification rate for the NIST SRE 2010 reduced from 29.43% to 27.15% when glottal source features are use

    PSD Estimation of Multiple Sound Sources in a Reverberant Room Using a Spherical Microphone Array

    Full text link
    We propose an efficient method to estimate source power spectral densities (PSDs) in a multi-source reverberant environment using a spherical microphone array. The proposed method utilizes the spatial correlation between the spherical harmonics (SH) coefficients of a sound field to estimate source PSDs. The use of the spatial cross-correlation of the SH coefficients allows us to employ the method in an environment with a higher number of sources compared to conventional methods. Furthermore, the orthogonality property of the SH basis functions saves the effort of designing specific beampatterns of a conventional beamformer-based method. We evaluate the performance of the algorithm with different number of sources in practical reverberant and non-reverberant rooms. We also demonstrate an application of the method by separating source signals using a conventional beamformer and a Wiener post-filter designed from the estimated PSDs.Comment: Accepted for WASPAA 201
    corecore