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Abstract

Speech enhancement is very essential to suppress the background noise and to increase speech
intelligibility and reduce fatigue in hearing. There exist many simple speech enhancement
algorithms like spectral subtraction to complex algorithms like Bayesian Magnitude estimators
based on Minimum Mean Square Error (MMSE) and its variants. A continuous research is going
and new algorithms are emerging to enhance speech signal recorded in the background of
environment such as industries, vehicles and aircraft cockpit. In aviation industries speech
enhancement plays a vital role to bring crucial information from pilot’s conversation in case of
an incident or accident by suppressing engine and other cockpit instrument noises. In this work
proposed is a new approach to speech enhancement making use harmonic wavelet transform
and Bayesian estimators. The performance indicators, SNR and listening confirms to the fact
that newly modified algorithms using harmonic wavelet transform indeed show better results
than currently existing methods. Further, the Harmonic Wavelet Transform is computationally
efficient and simple to implement due to its inbuilt decimation-interpolation operations
compared to those of filter-bank approach to realize sub-bands.
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Introduction:

Speech enhancement is concerned with improving some perceptual aspects of speech that has
been degraded by additive noise. In most applications, the aim of speech enhancement is to improve
the quality and intelligibility of degraded speech. The improvement in quality is highly desirable as it can
reduce listener fatigue, particularly in situations in which the listener is exposed to high levels of noise
for long period’s time (e.g. manufacturing). Speech enhancement algorithms reduce or suppress the
background noise to some degree and are sometimes referred to as noise suppression algorithms.

Speech enhancement is concerned with the processing of corrupted or noisy speech in order to
improve the quality or intelligibility of the signal. Applications range from front-ends for speech
recognition systems, to enhancement of telecommunications for aviation, military, teleconferencing,
and cellular environments.

In airplane communication system, the interference of aviation noise makes speech
enhancement necessary. As amplitude of aviation noise is very strong, it can do great harm to audition
Further it may also affect speech coding and impair speech quality. Strong noise produced by the
airplane engine may seriously affect the performance of airborne communication system. Under such
circumstances, enhancement of SNR, especially improving the articulation and intelligibility of speech is
very important. The aviation noise is one kind of wide-band noise. Because this noise and the speech
signal overlap strongly in the frequency range, the traditional method to eliminate the noise doesn’t
work well. Now there are many ways for speech enhancement, but most of them have their flaws [1].

In order to realize these algorithms in real-time applications, their efficient implementation in
terms of computational load, simplicity and performance is of main concern. In this direction sub band
approach has been used over decades to meet the real-time specific requirements.

In the multi-rate scenario, wavelet transform is an improvement over Short time Fourier
transform (STFT), as it enables good time localization in detecting fast events like transients and good
frequency resolution for low frequency slow processes. The speech enhancement in multi-rate domain
using spectral Subtraction and MMSE show that a non-uniform frequency resolution like in DWT does
improve the quality of speech. However, the different sampling rates for the subband complicate the
selection of smoothing factor which becomes function of subband sampling frequencies and requires
experimental effort to fix constants used for speech uncertainty detection in order to reduce
background and musical noise [2]. The nature of algorithms used in multi-rate processing should not
complicate the subband process in realizing a simple, computationally efficient speech enhancement
method.

The continuous wavelet transform (CWT) is basically a correlation of the signal with a wavelet of
appropriate scale at desired shifts or translations. This provides the shift invariant nature in a limited
sense as the scale and the shifts can be selected. However, from the implementation point of view
compared to CWT, the discrete wavelet transform (DWT) realized by a dyadic structure using a perfect
reconstruction filter bank, is generally used due to its computational efficiency. In DWT, the WT
coefficients are computed at predetermined translations and scales. Though this is computationally
efficient, in statistical applications, denoising, signal analysis, pattern recognition, WT computed at



smaller translations similar to CWT is preferred. This is due to the fact that the time resolution of DWT
is very coarse and a better one is desirable especially in detecting time of occurrence of an event/
transient in individual higher scales.

The discrete wavelet transform may be used as a signal-processing tool for visualization and
analysis of non-stationary, time-sampled waveforms. The highly desirable property of shift invariance
can be obtained at the cost of a moderate increase in computational complexity, and accepting a least-
squares inverse (pseudo-inverse) in place of a true inverse. A new algorithm for the pseudo-inverse of
the shift-invariant transform that is easier to implement in array-oriented scripting languages than
existing algorithm was presented [3] together with self-contained proofs. Its application to speech
preserved original pitch and formant frequencies also informal listening tests found clear and
understandable.

The Harmonic wavelet transform (HWT) is attractive from computational point of view, as it has
built in decimation and easier interpolation operation. This is based on grouping of DFT coefficients in a
dyadic fashion. The inverse transform of each group, gives the WT coefficients for that scale. For
reconstruction, these groups can be concatenated to get the complete FT and its inverse FT gives the
signal. The DFTHWT and DCTHWT have been explored for speech enhancement in conjunction with
MMSE [4].

Though the DFTHWT is computationally efficient, it suffers from the problems of DFT, mainly the
leakage and complex WT coefficients due to lack of DFT symmetry in the grouping process. This further
limits processing wavelet coefficients, which are complex. These are solved by the discrete cosine
harmonic wavelet transform (DCHWT). The symmetrical signal extension effectively reduces the
leakage. Further, the DCT being real and its built in symmetry, the WT coefficients are assured to be
real.

2. Speech algorithms descriptions:

It is based on a simple principle assuming additive noise; one can obtain an estimate of the clean
signal spectrum by subtracting an estimate of the noise spectrum from the noisy speech spectrum. The
noise spectrum can be estimated and updated during periods when the signal is absent. The assumption
made is that noise is stationary or slowly varying process, and that the noise spectrum does not change
significantly between the updating periods. The enhanced signal is obtained by computing the inverse
discrete Fourier transform of the estimated signal spectrum using the phase of the noisy signal.

2.1.MAGNITUDE SPECTRAL SUBTRACTION (MSS)

Assume that y(n), the noise-corrupted input signal, is composed of the clean speech signal x(n)
and the additive noise signal, d(n) i.e

y(n) =x(n) +d(n) (1)
Taking the discrete-time Fourier transform of both sides gives
Y(w) = X(w) + D(w) (2)

We can express Y (w) = |V (w)|e/%® (3)



Where |Y(w)| is the magnitude spectrum and 6,,(w) is the phase of the corrupted noisy signal. The
noise spectrum D(w) can also be expressed in terms of its magnitude and phase spectra as D(w) =
|D(w)|e/?4(®), The magnitude noise spectrum |D(w)|is unknown but can be replaced by its average
value computed during nonspeech activity. Similarly, the noise phase 6,;(w) can be replaced by the
noisy speech phase 6, (w). This is partly motivated by the fact that phase that does not affect speech
intelligibility may affect speech quality to some degree. After making these substitutions to eqgn. (2), we
can obtain an estimate of the clean signal spectrum:

X(@) = [IY ()] = |D(w)][]e/* (4)

Note that the magnitude spectrum of the enhanced signal |)?((u)| can be negative owing to inaccuracies
in estimating the noise spectrum. The magnitude spectra, however, cannot be negative. One solution to
this is to half-wave-rectify the difference spectra i.e., set the negative spectral components to zero as
follows:

12(w)] = {(I)Y(cu)l —|D)| if IY(w)| > |D(w)] o

else

2.2.Power Spectral Subtraction (PSS):

The preceding derivation of the magnitude spectral subtraction algorithm can be easily
extended to the power spectrum domain. In some cases, it might be best to work with power spectra
rather than magnitude spectra. To obtain the short-time power spectrum of the noisy speech, we
multiply Y (w) in egn. (2) by its conjugateY™(w). In doing so, eqn. (2) becomes:

Y (@)? = [X(@)I* + [D(@)]* + X(w) - D*() + X" (w) - D(w)
= [X(@)I* + ID(@)|? + 2Re{X (w)D* (w)} (6)

The terms |[D(w)|?, X(w) - D*(w), and X*(w) - D(w) cannot be obtained directly and are approximated
as E[|D(w)|?], E[|X*(w) - D(w)|], and E[|X(w)-D*(w)|], where E[-] denotes the expectation
operator. Typically, E[|D(w)|?] is estimated during nonspeech activity and is denoted by |5(w)|2. If we
assume that d(n) is zeros mean and uncorrelated with the clean signal x(n), then the terms E[|X*(w) -
D(w)|] and E[|X(w) - D*(w)|] reduce to zero. Thus, after using the preceding assumptions, the
estimate of the clean speech power spectrum can be obtained as follows:

12| = ¥ ()2 - |D(w)|* ((7)

The preceding equation describes the power spectrum subtraction algorithm. As before, the
estimated power spectrum in egn. (7) is not guaranteed to be positive, but can be half-wave rectified as
shown in eqn. (5). The enhanced signal is finally obtained by computing the inverse Fourier transform of
|)?(w)| and adding phase of the noisy speech signal. Note that if we take the inverse Fourier transform
of both sides in eqgn. (7) we get similar equation in the autocorrelation domain, i.e.,

rax(m) =1y, (M) —rg4(m) (8)



Where 135, (m), 75, (m), and r4,4(m) are the autocorrelation sequences of the estimated clean signal,
the noisy speech signal, and the estimated noise signals, respectively. Hence, the subtraction could in
principle be performed in the autocorrelation domain.

Equation (7) can also be written in the following form:
I 2
|X(0)|” = H* (@)Y (W)I? (9)

Where

f |D(w)|?

Hw)= |1- 10
(@) Y (w)]2 (10)
In the context of linear systems theory, H(w) is known as the system’s transfer function. In speech
enhancement, we refer to H(w) as the gain function, or suppression function. Note that H(w) in
equation is real, a zero phase filter and in principle, is always positive, taking values in the range of
0 < H(w) < 1. Negative values are sometimes obtained owing to inaccurate estimates of the noise

spectrum. H(w) is called the suppression function or SNR-dependent attenuator because it provides the
amount of suppression applied to the noisy power spectrum |Y (w)|? at a given frequency to obtain the

- 2
enhanced power spectrum |X((u)| . The attenuation at each frequency increases with the decreasing
SNR, and conversely decreases with the increasing SNR eqgn. (10).

A more generalized version of the spectral subtraction algorithm is given by
o P _ » _ 1R p
|X(@)]" = 1Y (@)IP — [D(w)] (11)

Where p is the power exponent, with p=1 yielding the original magnitude spectral subtraction [5], and
p=2 yielding the power spectral subtraction algorithm. The general form of the spectral subtraction
algorithm is shown in figure (1).

Noise
estimation/update ID(w)|?
Y(w) D
Noisv soeech—» FFT |1 '\-'_
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Fig.1. General Form of the spectral subtraction



2.3.Wiener Filtering (WF):

The spectral-subtractive algorithms are based largely on intuitive and heuristically based
principles. More specifically, these algorithms exploited the fact that noise is additive and one can
obtain an estimate of the clean signal spectrum simply by subtracting the noise spectrum from the noisy
speech spectrum. The enhanced signal spectrum was not derived in an optimal way. Considering the
statistical filtering problem, Fig.2. The input signal goes through a linear and time-invariant system to
produce an output signaly(n). We are to design the system in such a way that the output signal a(n) is
as close to the desired signal,d(n) as possible. This can be done by computing the estimation error,
e(n), and making it as small as possible. The optimal filter that minimizes the estimation error is called
the wiener filter, named after the author.

Desired
response
Linear time d(n)
_blnput invariant filter Output
y(m) o, hy, hz.... d(n) Estimation
Error e(n)

Fig.2. Block diagram of the statistical filtering problem

The mean square of the estimation error is commonly used as a criterion for minimization, and the
optimal filter coefficients can be derived in the time or frequency domain. In this work frequency
domain is considered.

2.3.1. Wiener filters in the frequency domain:

Considering eqn. (1) and (2) and assuming a filter is used to get an output denoted by X(k),
X(K) = HK)Y(K) (12)

The objective is to obtain an expression for W(k) which minimizes the least mean-square error, E,,,
defined as follows:

Em = E[(R(0) = X ()]

Ep = E[(H(K)Y (k) — X (k))?] (13)
Expanding eqn. (13), we get

= H(k)?E[Y (k)*] + E[X(k)?] — 2H(K)E[Y (K)]E[X (k)] (14)
Eqn. (2) in eqn. (14), we have

= H(k)?E[X (k) + D(k)*] + E[X (k)?] = 2H(K)E[X (k) + D(K)]E[X (k)]



Now setting derivative d‘if(’z) in eqn. (14) to zero, we get well known wiener filter as follows, assuming
E[X(k)D(k)] = 0.
_ Sk
H(k) = Til (15)
E[X()?]
where &, = (7]

2.4.Statistical-Model-Based Methods:

In the previous section we described the wiener filter approach to speech enhancement. This
approach derives in the mean-square sense the optimal complex discrete Fourier transform (DFT)
coefficients of the clean signal. The wiener filter approach vyields a linear estimator of the complex
spectrum of the signal and is optimal in the MMSE sense when both the noise and speech DFT
coefficients are assumed to be independent Gaussian random variables.

In this section, nonlinear estimators of magnitude rather than the complex spectrum of the
signal (as done by the wiener filter), using various statistical models and optimization criteria. These
nonlinear estimators take the probability density function (PDF) of the noise and the speech DFY
coefficients explicitly into account and use, in some cases, non-Gaussian prior distributions. These
estimators are often combined with soft-decision gain modifications that take the probability of speech
presence into account.

The speech enhancement problem is posed in a statistical estimation frame-work [4]. Given a
set of measurements that depend on an unknown parameter, we wish to find a nonlinear estimator of
the parameter of interest. In our application, the measurements correspond to the set of DFT
coefficients of the noisy signal and the parameters of interest are the set of DFT coefficients of the clean
signal. Various techniques exist in the estimation theory literature for deriving these nonlinear
estimators and include the maximum-likelihood estimators and the Bayesian estimators. These
estimators differ primarily in the assumptions made about the parameter of interest (e.g. deterministic
but unknown, random) and the form of optimization criteria used.

2.4.1. Maximum-Likelihood estimators:

The maximum-likelihood approach is perhaps the most popular approach in statistical estimation
theory for deriving practical estimators, and is often used even for the most complicated estimation
problems. It was first applied to speech enhancement by McAulay and Malpass [6].

Suppose that we are given an N-point data set y = {y(0), (10, ...., y(N — 1)} that depends on an
unknown parameterf. In speech enhancement, y (the observed data set) might be the noisy speech
magnitude spectrum, and the parameter of interest, 8, might be the clean speech magnitude spectrum.
Furthermore, suppose that we know the pdf of y, which we denote by p(y;8). The pdf of y is
parameterized by the unknown parameter 6, and we denote that by the semicolon. As the parameter 6
affects the probability of y, we should be able to infer the values of 8 from the observed values of y.
Mathematically, we can look for the value of 8 that maximizes p(y; 8), that is

Ou1, = argmaxg p(y; 6) (16)



The preceding estimate,d,,;, is called the maximum-likelihood estimate of 6. The pdf p(y;8) is
called the likelihood function as it can be viewed as a function of an unknown parameter. To find 6y,
we differentiate p(y; 8) with respect to 6, set the derivative equal to zero, and solve for 6. we have
considered it is convenient to find 8, by differentiating instead the log of p(y; 8) , which is called the
log-likelihood function.

It is important to note that the parameter 8 is assumed to be unknown but deterministic. This
assumption differentiates the MLE approach from the Bayesian one, in which 8 is assumed to be
random.

Let y(n) = x(n) + d(n) be the sampled noisy speech signal consisting of the clean signal x(n) and
the noise signal d(n). In the frequency domain, we have

Y(wi) = X(wy) + D(wy) (17)

For wy = 2;—]{ and k =0,1,2,...,N — 1, where N is the frame length in samples.
The preceding equation can also be expressed in polar form as:

Y,e/8(0 = X, ei0x(k) 1 p, eifalk) (18)

Where {Xy, Yy, D} denote the magnitude and {By(k), 0, (k), Gd(k)} denote the phases at frequency bin
k of the noisy speech, clean speech, and noise, respectively.

In the maximum-likelihood approach proposed by McAulay and Malpass, the magnitude and phase
spectra of the clean signal, i.e., X;, and 6,(k) are assumed to be unknown but deterministic. The

probability density functions of the noise Fourier transform coefficients D(wy,) is assumed to be zero-
. . . . Aq(k
mean, complex Gaussian. The real and imaginary parts of D(w;) are assumed to have variances %.

Based on these two assumptions, we can form the probability density of the observed noisy-speech DFT

coefficients, Y (wy). The probability density of Y (wy) is also Gaussian with variance 1,;(k) and the mean
X ei0x(0).

1
p(Y (0i); X 62 (K)) = =

_ |Y(a)k)—Xkej9"(k)|z
exp [ 2a(k)

1 [_ Ykz—zkae{e—f"x(k)y(wk)}+x,§] (19)

T maq(k) Aq(k)

To obtain the maximum-likelihood of estimate of X;,, we need to compute the maximum of
p(Y(wy); Xk, 0,(k)) with respect toXy. This is not straight forward, however, because
p(Y(wy); Xy, 0, (k)) is a function of two unknown parameters: the magnitude and the phase. The phase
parameter is considered to be a nuisance parameter, which can be easily eliminated by “integrating out”
More specifically, we can eliminate the phase parameter by maximizing instead the following average
likelihood function:

21

p(Y (wi); Xi) = [, p(Y (@i); Xy, 0x) p(Bx)db, (20)

Assuming a uniform distribution on (0,2m) for the phase 6,, i.e., assuming that p(6,) =i for
0, €[0,27], the likelihood function becomes:



. 1 _Y24XE] 1 c2m 2XiRe(e 19xy (wy))
p(Y(a)k),Xk)—Md(k)exp[ ld(k)]ano exp[ Aa(k) ]d@x (21)

The integral in the preceding equation is known as the modified Bessel function of the first kind and
is given by:

I(lxD) = %fozn exp|[Re(xe 1%%)| do, (22)
Where x = 2X,. Y (wy)/14(k) (23)

As shown in Figure.1 for values of |x| > 0.258, the preceding Bessel function can be approximated
as:

1

Iy(Ix|) = Tonal SXP (IxD) (24)

Substituting eqn. (23) in eqn. (24), we get

1
Vem|2XiY (@) /Aq (k) |

Io (12X Y (wi) /Aq (k) ) = exp (12X, Y (wi)/Aq(k) ) (25)

Again now using eqn. (25) for Bessel function substitution in eqn. (21) and reordering exponentials
we get,

[ YE+XE —zxkyk]

2
Aa (k) (26)

1 1
p(Y (wi); Xi) = o T eXp
(k) 2XkYk
d Zn_ld(k)

After differentiating the log-likelihood function log p(Y (wy); Xi) with respect to the unknown X,
and setting the derivative to zero, we get the maximum-likelihood estimate of the magnitude spectrum:

% = %[Yk + /Ykz - Ad(k)] (27)

Using the noisy phase 6,, in place of 6,, we can express the estimate of the clean signal spectrum as:

X((l)k) = )?kejey = Xk@
k

_|1,1 /Y,?—/ld(k)
= [2 + 2 YkZ ] Y((l)k) (28)
2

Ay’(‘k) denote the a posteriori or measured signal-to-noise ratio (SNR) based on the
d

observed data, the preceding equation can also written as:

Letting y, =

e — 1

=

Y(wi)

= Gy (V)Y (wi) (29)



Where Gy (vi) denotes the gain function of the maximum-likelihood estimator. It has been seen that
the maximum-likelihood suppression rule provides considerably smaller attenuation compared to the
power subtraction and wiener suppression rules.

In the preceding derivation, we assumed that the signal magnitude and phase (X, and 6,) were
unknown but deterministic. If we now assume that both signal and speech DFT coefficients are modeled
as independent, zeros-mean Gaussian random processes, but it is the signal variance, 1, (k), that is
unknown and deterministic, we get a different likelihood function. As the signal and noise are assumed
to be independent, the variance of Y(wy), denoted as A, (k), is given by: A, (k) = A,(k) + A4(k).
Hence, the probability density of Y (wy,) is given by:

. _ 1 _ v
P(¥ (@ Ax()) = Crs i P [ e (k) +Aq () (30)
Maximizing the likelihood function p(Y(a)k); Ax(k)) with respect to A, (k), we get:
A (k) = YZ = 24(k) (31)

Assuming that XZ ~ A,(k) and D =~ A4(k) (and Y;Z — 24(k) > 0), we get estimate of the signal
magnitude spectrum:

X = /Y,f — D? (32)

Note that this estimator of X}, is nothing but the power spectrum subtraction estimator. Hence, the
original power spectrum subtraction approach can be derived using maximum-likelihood principles by
assuming that the signal and noise Fourier transform coefficients are modeled as independent Gaussian
random processes and the signal variance, 1, (k), is unknown but deterministic.

As in eqn. (29), we can compute the estimate of the clean signal spectrum obtained by power
spectrum subtraction as:

X((Uk) = XAkejey = XAk _Y(ka)
k

= / WPy () (33)
Y

In terms of yy, the preceding equation can be written as:

2w = "= v(wy)

= Gps(yk)y((‘)k) (34)

Where Gps(yx) is the gain function of the power spectrum subtraction method. Finally, it is
worth noting that if we substitute the maximum-likelihood estimate of A,.(k) in the wiener filter egn.
(35):

¥4 _ Ax(k)
X(@1) = s Y (@) (35)



o v —Aa(k
R(w) =2 ¥ (@)

=¥ (@) (36)

= 55 (Vi) Y(wyg)

Comparing eqn. (34) with eqgn. (36), we see that the wiener estimator is the square of the power
spectrum subtraction estimator. Consequently, the wiener estimator provides more spectral
attenuation than the power spectrum subtraction estimator, for a fixed value of yy.

Finally, it should be pointed out that the maximume-likelihood suppression rule is never used by
itself, because it does not provide enough attenuation.

2.4.2. Bayesian Estimators:

In the maximum-likelihood approach for parameter estimation, in which we assumed that the
parameter of interest, 8, was deterministic but unknown. Now, we assume that 6 is a random variable,
and we therefore need to estimate the realization of that random variable. This approach is called the
Bayesian approach because its implementation is based on Bayes’ theorem. The main motivation behind
the Bayesian approach is the fact that if we have available a priori knowledge about 6, i.e., if we know
p(6), we should incorporate that knowledge in the estimator to improve estimation accuracy. The
Bayesian estimators typically perform better than the MLE estimators, as they make use of prior
knowledge.

2.4.2.1. MMSE Estimator:

Acknowledging the importance of the short-time spectral amplitude (STSA) on speech intelligibility
and quality, several authors have proposed optimal methods for obtaining the spectral amplitudes from
noisy observations. In particular, optimal estimators were sought that minimized the mean-square error
between the estimated and true magnitudes:

~ 2

e=E{(% - %)’} (37)
Where )?kis the estimate spectral magnitude at frequency wy, and X}, is the true magnitude of the clean
signal.

The minimization of eqn. (37) can be done in two ways, depending on how we perform the
expectation. In the classical mean-square error (MSE) approach, the expectation is done with respect to
p(Y; X;), where Y denotes the observed noisy speech spectrum, Y = [Y (wg) Y(w;) ... Y(wy_1) |. In the
Bayesian MSE approach, the expectation is done with respect to the joint pdf p(Y, X).), and the Bayesian
MSE is given by:

Bmse(R) = [f (X — )* (Y, X)dYdX, (38)

Minimization of the Bayesian MSE with respect to X}, leads to the optimal MMSE estimator
given by [7]:



X = ka p(XiY)d Xy
= E[X|Y] (39)

= E[X¢|Y (wg)Y (W) - Y (wy—1)]

Which is the mean of the a posteriori probability density function of X,. The posteriori pdf of the clean
spectral amplitudes, i.e., p(X,|Y), is the pdf of the amplitudes after all the data are observed. In
contrast, the a priori pdf of Xy, i.e., p(X}), refers to the pdf of the clean amplitudes before the data are
observed.

Note that there are two fundamental differences between the wiener estimator and the MMSE
estimator given in eqn. (39). First, in the wiener filter derivation, we assumed that X(wy) = H,Y (wy)
for some unknown filter H,, that is, we assumed that there is a linear relationship between Y (w;) and
X(wy). Second, the wiener filter is obtained by evaluating the mean of the posterior pdf of X(wy)
rather than X, that is, it is given by E[X(wy)|Y (w)]. The wiener filter is therefore the optimal complex
spectrum estimator and not the optimal magnitude spectrum estimator under the assumed model.

The MMSE estimator given in eqn. (40), unlike the wiener estimator does not assume the

existence of a linear relationship between the observed data and the estimator, but it does require
knowledge about the probability distribution of the speech and noise DFT coefficients. Assuming that we
do have prior knowledge about the distributions of the speech and noise DFT coefficients, we can
evaluate the mean of the posterior probability density function of X}, that is, the mean of p(X;|Y).

Measuring the true probability distributions of the speech Fourier transform coefficients,
however, has been difficult, largely because the speech signal is neither a stationary nor an ergodic
process. Several have attempted to measure the probability distributions by examining the long-time
behavior of the processes [8-10]. As argued in [4], however, it is questionable whether histograms of the
Fourier coefficients, obtained using a large amount of data, measure the relative frequency of the
Fourier transform coefficients rather than the true probability density of the Fourier transform
coefficients.

To circumvent these problems, Ephraim and Malah [4] proposed a statistical model that utilizes
the asymptotic statistical properties of the Fourier transform coefficients [11]. This model makes two
assumptions:

1. The Fourier transform coefficients (real and imaginary parts) have a Gaussian probability
distribution. The mean of the coefficients is zero, and the variances of the coefficients are
time-varying owing to the nonstationarity of speech.

2. The Fourier transform coefficients are statistically independent and hence uncorrelated.

The Gaussian assumptions are motivated by the central limit theorem, as the Fourier transform
coefficients are computed as a sum of N random variables. Consider, for instance, the computation of
the noisy speech Fourier transform coefficients, Y (wy):

Y(wy) = ZNZ3y(m)e ™9k = y(0) + ayy(1) + a,y(2) + -+ ay_1y(N — 1) (40)



Where a,, = exp (—jw,m) are constants, and y(n) is the time-domain samples of the noisy speech
signal. According to the central limit theorem [12], if the random variables {y(n)}lx;; are statistically
independent, the density of Y(wy) will be Gaussian. The central limit theorem also holds when
sufficiently separated samples are weakly dependent as is the case with the speech signal.

The uncorrelated assumption is motivated by the fact that the correlation between different
Fourier coefficients approaches zero as the analysis frame length N approaches infinity [11,13]. In
speech applications, however, we are constrained by the nonstationarity of the speech signal to use
analysis frame lengths on the order of 20-40msec. This may cause the Fourier transform coefficients to
be correlated to some degree [14]. Despite that, overlapping analysis windows are typically used in
practice. Although such “window overlap” clearly violates the assumption of uncorrelatedness, the
resultant models have proved simple, tractable, and useful in practice. Models that take this correlation
into account have also been proposed [15].

2.5.MMSE Magnitude Estimator:

To determine the MMSE estimator we first need to compute the posterior pdf of X, i.e.,
p(Xk|Y (wg)). We can use Bayes’ rule to determine it as:

P(Y (@) 1Xi)p (Xi)
p(Y (@)

_ _ p((@RIX0p(XK)
I p(Y (@) lxi)p (i) dxe

P(XilY (wi)) =

(41)

Where xis a realization of the random variable X,. Note that p(Y(wy)) is a normalization factor
required to ensure that p(Xj|Y (wy)) integrates to 1. Assuming statistical independence between the
Fourier transform coefficients, i.e.,

E[Xi|Y (wo) Y (w1) Y(wz) -+ Y (wy-1)] = E[Xp|Y ()] (42)
And using the preceding expression for p(X,|Y (wg)), the estimator in eqn. (39) simplifies to:
X = E[Xic|Y (wp)]
= Jy xep CeilY (@1)) dox (43)

_ Jo xep (Y (@i l)p (i) dx
Jo. (Y (@) lxi)P (i) daxe

Since

p(Y ()| Xi)p(Xy) = fozn P(Y (i) X, 6x)p (x1,65) dOy (44)

Where 6, is the realization of the phase random variable of X(w;), we get



2 J2 J2 xep (¥ (@) 1%k 0D (e O A At us)
T [P p (v (@i )P (ko Bx) d B,

Next, we need to estimate p(Y(wy)|xk, 6,) and p(xy, 6,). From the assumed statistical model, we
know that Y(w;) is the sum of two zero-mean complex Gaussian random variables. Therefore, the
conditional pdf p(Y (wy)|xk, 6,) will also be Gaussian:

p(Y (wi)lxy, 0x) = pp (Y (wy) — X (wg)) (46)

Where pp (+) is the pdf of the noise Fourier transform coefficients, D (wy,). The preceding equation then
becomes:

P(Y (@)%, 8) = s e {= 15 Y (@) — X (@)1 (47)

Aa(k)

Where A4(k) = E{|D(wy)|?} is the variance of the kth spectral component of the noise. For complex
Gaussian random variables, we know that the magnitude (X} ) and the phase (8, (k)) random variables
of X(wy) are independent, and can therefore evaluate the joint pdf p(xy, 8,) as the product of the
individual pdf’s, i.e., p(xy, 6,) = p(x)p(0,). The pdf of X, is Rayleigh since X; = /r(k)? + i(k)?,
where r(k) = Re{X(w)} and i(k) = Im{X(wy)} are Gaussian random variables. The pdf of 8, (k) is
uniform in (—m, ) and therefore the joint probability p(xy, 8,) is given by:

_
p(xk, ) = (k) p{ Ax(k)} (48)

Where A,.(k) = E{|X(wy)|?} is the variance of the kth spectral components of the clean signal.
Substituting eqn. (47) and eqn. (48) into eqn. (45), we get:

Yi-2x;Re(e 19% Y(w)) )+x7
0 (2T 2 k k ( k k "k
I Js xkexp[ 1200 p) dO,dxy

Xie = YZ-2x Re(e_jex Y(w )>+x2 2
00 (2T k~“*k k kK Xj
Il Xkexzn[ e Ax(k)]dexdxk

* xZexp

Jo —]f exp[2x;Re{e 10xY (wy)}]|dOxdxy

(49)

Jo xkexp[——]f exp[2xiRe{e 10xY (wk)}]|dOxdx

1 1
Where - =
ere Ak = o T 4o

(50)

Note that Aj can also be expressed as:

_ Ax()Aa(k) _ Ay (k)
A = 300400 148 (51)

The inner integral in eqn. (49) is the modified Bessel function of the first kind, and has the following
form:



lo(I2l) = o= J; ™ exp[Re(ze /%) db, (52)

Where z = 2x;, Y (wy)/A4(k). Using the preceding integral relationship in egn. (49) We get:

© 2 %
N xkexp[—a

—

Io(2xpY (Wg)/Aa(k))dxy
(53)

Xk: 2
*k

e xkexp[—lk Io(2xkY (k) /Aa(k))dx

The ratio Y, /A,4(k) in the preceding eqn. can be expressed in terms of 4, (eqn. (51)) as follows:

Ye | V2 A(R) 1
Adk) Aq (k) Aq (k) Ax (k)

Vi ¢
visk _ |Gk (54)
(k) - Ax (k)

fk+1
Vi
Ak

And egn. (49) reduces to:

f:o xZexp

K =
f:o Xpexp

xZ v
_ﬁ]IO(Zxk\/%)dxk (55)

2
%k Yk
Ak]IO(Zxk lk)dxk

We can evaluate the preceding integral using confluent hypergeometric functions as follows:

3
5 TASHMIZOG LV
kT (v (56)

oG 1vi)
- F(l's)‘/l_"cp(i,m)

Where ¢ (a, b; z) is the confluent hypergeometric function and I'(1.5) = 7” Using the hypergeometric

relationship for the numerator and denominator, the preceding estimator finally simplifies to:

)?k _ r(1.5)/Ax e :Vt(—o.sn;—vk) (57)

= [(1.5)y/Acd(—0.5,1; —vy)

The above equation can be further simplified using some mathematical relationships and we get:

Xe = g Axexp (— V;“) [(1 + vl (Vz—k) + vy (\%‘)] (58a)

Where [,(+) and [, (+) denote the modified Bessel functions of zero and first order, respectively.



The egn. (58a) is a function of two parameters: the a priori SNR &,,and the a posteriori SNR value y;. we
can express the estimated magnitude in terms of a gain function, i.e., X, = G (&, Vx)Y) . The spectral
gain function G (&, Yi):

G () = 3= = Ty Meexp (=2 [(1 + o (%) + vidy ()] (58b)

To examine the dependency of &,and yon the gain function, we can plot G (&, %) as a function of the
a priori SNR for a fixed a posteriori SNR values.

Note that for large values (~20dB) of the instantaneous SNR, the MMSE gain function is similar to the
Wiener gain function, which is given by

G (51) = 2k (59)

Ep+1

In other words, the MMSE estimator behaves like the Wiener estimator when & is large. Note that
unlike the MMSE gain function, the Wiener gain function does not depend on the a posteriori SNR ;.
The fact that G (&, yx) depends on both &, and y; will prove to be important for reducing the musical
noise.

The spectral gain function can alternatively be plotted as a function of the a posteriori SNR (y;, — 1) for
a fixed values of &,. The fact that the suppression curve is relatively flat for a wide range of y,when
& = —10dB suggests that the a posteriori SNR y;, has a small effect on suppression. This suggests that
the a priori SNR &, is the main parameter influencing suppression. The effect of y; on suppression is only
evident for extremely low values of & (i.e., §, = —15dB). The behavior of y,is counterintuitive in that
more suppression is applied when yis low.

2.5.1. Estimating the A priori SNR:

The MMSE amplitude estimator eqn. (58) was derived under the assumption that the a priori
SNR & and the noise variance 4,4(k) are known. However, we only have access to the noisy speech
signal. The noise variance can be estimated easily assuming noise stationarity, and can in principle be
computed during nonspeech activity with the aid of a voice activity detector or a noise estimation
algorithm. Estimating &, however, is considerably more difficult.

Ephraim and Malah[4] first examined the sensitivity of the amplitude estimator to inaccuracies
of the a priori SNR &;,. They found the MMSE estimator to be relatively insensitive to small perturbations
of the &, value. More interesting was the finding that the MMSE estimator was more sensitive to
underestimate rather than overestimates of the a priori SNR .

Several methods were proposed for estimating the a priori SNR &,but the method used in this

project activity is explained in detail.
2.5.2. Decision-Directed Approach:

The approach is based on the definition of &, and its relationship with the a posteriori SNR y,.
We know that &, is given by:



_ E{xim)}
$x(m) = W (60)

We also know that & is related to y, by

_ E{vém)-pi(m}
_ E(wtem} _ E{DE(m)}

Ad(k,m) }td(k,m) (61)
=E{yx(m)} -1
Combining the two expressions for &, i.e.,eqn. (60) and egn. (61), we get:
_ pflXgm 1 _
§e(m) = E {3720 42 [y (m) — 1] (62)
The final estimator for &, is derived by making the preceding eqn. recursive:
¢ (m) = q M= | g _ _
§e(m) = a5 52+ (1 - aymax[yy (m) - 1,0] (63)

Where 0 < a < 1 is the weighting factor replacing the % in eqn. (62), and XZ(m — 1) is the amplitude
estimator obtained in the past analysis frame. The max (-) operator is used to ensure the positiveness of
the estimator, as &, (m) needs to be nonnegative.

This new estimator of & is a weighted average of the past a priori SNR (given by the first term)
and the present a priori SNR estimate (given by the second term). Note that the present a priori SNR
estimate is also the maximum-likelihood estimate of the SNR. Eqn. (63) was called the decision-directed
estimator because fk(m) is updated using information from the previous amplitude estimate. The
decision-directed approach for estimating the a priori SNR was found not only important for MMSE-type
algorithms but also in other algorithms

Egn. (63) needs initial conditions for the first frame, i.e. for m = 0. The following initial
conditions were recommended [6] for &, (n):

&(0) = a + (1 — a)ymax[y, (0) — 1,0] (64)
Good results were obtained with a = 0.98.
2.5.3. Elimination of MUSICAL NOISE

Ephraim and Malah [4] noted that when the a priori SNR was estimated using the decision-directed
approach, the enhanced speech had no “musical noise.”But when the ML (one of the method to
estimate a priori SNR, this method should not be confused with speech enhancement method) approach
was used to estimate the a priori SNR, the enhanced signal had musical noise. Yet, in both cases the
same suppression rule was used. No explanation was given in [4] as to why that was the case. Cappe



[16] 10 years later, provided a detailed explanation of the mechanisms that countered the musical noise
phenomenon.

Cappe noted that the effectiveness of the a priori SNR estimator is closely coupled to the
suppression rule. The suppression rule in eqn. (58) is greatly affected by both a priori SNR &, and a
posteriori SNR y;, parameters. Of the two parameters, the a priori SNR &, is the dominant one in that it
exerts the most influence of suppression. But what is the role of the a posteriori SNR y;.?

a posteriori SNR yacts as a correction parameter that influences attenuation only when & is low.
The correction, however, is done in an intuitively opposite direction. As in figure, Strong attenuation is
applied when y;, is large, and not when y;, as we could expect. This counterintuitive behavior is not an
artifact of the algorithm, but it is actually useful when dealing with low-energy speech segments.

Understanding the dominant behavior of &, on suppression is critical in understanding the
mechanism responsible for eliminating musical noise. The underlying mechanism for eliminating the
musical noise lies in the recursive calculation of the a priori SNR. The decision-directed estimator of &
exhibits two different types of behaviors, depending on the value of y,,. When y;, stays below or close to
0dB, the &, estimate corresponds to a smoothed version of y,. In fact, when yyis large &, can be
approximated as &, (m) = (1 — a)y,(m — 1)-that is, & follows y,but with a delay of one frame.
Increasing the value of a increases the time delay, and that might have an adverse effect when
encountering short transient segments of speech.

As the attenuation in the MMSE algorithm is primarily influenced by the smoothed value of the a
priori SNR, the attenuation itself will not change radically from frame to frame. Consequently, the
musical noise will be reduced or eliminated altogether. In contrast, the spectral subtraction algorithm
depends on the estimation of the a posteriori SNR, which can change radically from frame to frame. As a
result, musical noise is produced. It is the smoothing behavior of the decision-directed approach in
conjunction with the suppression rule that is responsible for reducing the musical noise effect in the
MMSE algorithm.

2.6.LOG-MMSE ESTIMATOR

In the previous section, we derived the optimal MMSE spectral amplitude estimator, which
minimized the error of the spectral magnitude spectra. Although a metric based on the squared error of
the magnitude spectra is mathematically tractable, it may not be subjectively meaningful. In this section
a metric based on the squared error of the log-magnitude spectra may be more suitable for speech
processing. Derivation of an estimator that minimizes the mean-square error of the log-magnitude
spectra is as follows:

E{(log X;, — log X;)?} (65)

The optimal log-MMSE estimator can be obtained by evaluating the conditional mean of the
log Xy, i.e.,

log X), = E{log X;.|Y (wi)} (66)



From which we can solve for X;:
Xy = exp (E{log X, |[Y (w)}) (67)

The evaluation of E{log Xi|Y(wy)} is not straightforward but can be simplified if we use the
moment-generating function of X}, conditioned on Y (wy,).

Let Z;, = log X}, then the moment-generating function of Z;, conditioned on Y (wy,) is given by:
Q)Zle(wk)(ﬂ) = Efexp[uZ;]|Y (wi)}
= E{X}|Y (wp)} (68)

The conditional mean of log X;, can then be obtained from the moment-generating function by
evaluating the derivative of @z, |y, (W) atp = 0, i.e.,

E{log X |Y (wi)} = %@zkw(wk)(ﬂ)m =0 (69)

We are then left with the task of evaluating the moment-generating function @, y(w,) (). From

egn. (68) we see that we need to evaluate the term E{X,’:lY(wk)}, which is very similar to (43) i.e.,
By (w0 ) = E{X; 1Y (0i)}

I T (Y (@301 0x)P (x4 0x) dOx
157 18T (Y (@)l 0P (x), 02) A0,

(70)

Using the same statistical model as in derivation of the MMSE estimator, and after substituting (47)
and (48) in eqn. (71), we get:

B i@ = AT (5+1) o(—1/2,1,-vp) (71)
It is easy to see the similarities between eqn. (71) with egn. (60) by simply putting u = 1.

Where T'(+) is the gamma function, ¢(a, b;x) is the confluent hyper geometric function, vy is
defined in egn. ( 54), and yy is defined in egn. (51).

After taking the derivative of Q)Zkly(wk) (u) with respect to 1 and evaluating it at u = 0, we get the

conditional mean of the log X,:
1 1 1 roet
E{log X;|Y (wy)} = Eloglk + Elogvk + Eka Tdt (72)

Finally, substituting the preceding equation into eqn. (73), we get the optimal log-MMSE estimator:

¢ ot e
X _fk+1exP{2ka t dt}y"

= Grsa(Sr Vi) Ye (73)



Where &is the a priori SNR, and G;s4(&x, Vi) is the gain function of the log-MMSE estimator. The
integral in the preceding eqn. is known as the exponential integral and can be evaluated numerically.
The exponential integral, Ei(x), can be approximated as follows:

. 0e™* x k!
Ei() = [ —dx~—Yiz (74)

It has been seen that the gain function of the log-MMSE estimator is shifted down for the most part by
3 dB relative to the gain function of the linear-MMSE estimator. This suggests that the log-MMSE
estimator provides more attenuation than the linear-MMSE estimator for the same values of the a
posteriori and a priori SNRs. This also confirmed with listening experiments. The log-MMSE estimator
reduces the residual noise, and most importantly, without affecting the speech signal itself, i.e., without
introducing much speech distortion. It is also clear from these spectrograms that the log-MMSE
estimator reduces the residual noise considerably without affecting the speech signal.

2.7.INCORPORATING SPEECH ABSENCE PROBABILITY IN SPEECH ENHANCEMENT:

In the preceding methods, it was implicitly assumed that speech was present at all times. However,
in reality speech contains a great deal of pauses, even during speech activity. The stop closures, for
example, which are brief silent periods occurring before the burst of stop consonants, often appear in
the middle of a sentence. Also, speech may not be present at a particular frequency even during voiced
speech segments. This was something that was exploited in multiband speech coders [17], in which
spectrum was divided into bands, and each band was declared as being voiced or unvoiced. The voiced
bands were assumed to be generated by a periodic excitation, whereas the unvoiced bands were
assumed to be generated by random noise. Such a mixed source excitation model was shown to
produce better speech quality than the traditional voiced/unvoiced models [18]. It follows then that a
better noise suppression rule may be produced if we assume a two-state model for speech events; that
is, that either speech is present or it is not.

2.8.Incorporating speech-presence uncertainty in MMSE Estimators:

The linear-MMSE estimator that takes into account the uncertainty of signal presence can be
derived with a new estimator given by:

X = E(X |V (wp), HE)P(HE|Y (wp)) (75)

Note that this estimator is uses a complex noisy speech Y(wy), rather than the noisy magnitude
spectrum Y. To compute P(HF|Y (wy)), we use Bayes’ rule:

p(Y (W) |HY)P(H,)
p(Y(wp) [HF)P(H)+p(Y (wi) [HX)P (Ho)

P(HY|Y (wk)) = (76)

_ A0
1+A(Y(0k),qK)

Where A(Y(wy), qx) is the generalized likelihood ratio defined by:



_ 1-qx p(Y(wk)|H1)

A @, 810 = =3 5 o o) (77)

Where g, = P(HX) denotes the a priori probability of speech absence for frequency bin k. The a priori
probability of speech presence, i.e., P(HY), is given by (1 — qy,).

Under hypothesis Hy, Y(wy) = D(wy), and as the pdf of the noise Fourier transform
coefficients, D(wy), is complex Gaussian with zero mean and variance A;(k), it follows that
p(Y (wi)|HY) will also have a Gaussian distribution with the same variance, i.e.,

2
p(Y (@OIHE) = —sexp (- 155) (78)

Under hypothesis Hy,Y(wy) = X(wy) + D(wy), and because the pdfs of D(wy) and X(wy) are
complex Gaussian with zero mean and variances A;(k) and A, (k), respectively, it follows that Y (wy)
will also have a Gaussian distribution with variance 1,4 (k) + 1,.(k):

kY _ 1 _Y—kz
(Y (WIHY) = o g ©*P ( Ad(k)mx(k)) 79

Substituting eqn. (78) and eqn. (79) into eqn. (77), we get an expression for the likelihood ratio:

f
exp| 7Yk
’ 1-gk [1+Ek ]
ACY Ao éy) =— ——— 80
(Y(01), Ao ) = 2 — (80)
Where &, indicates the conditional a priori SNR:
21 gk
5]2 — E[Xlel] (81)

Aqa(k)

Note that the original definition of &, was unconditional, n that it gave the a priori SNR of the
kth spectral component regardless of whether speech was present or absent at that frequency. In
contrast, & provides the conditional SNR of the kth spectral component, assuming that speech is
present at that frequency. The conditional SNR is not easy to estimate, nut can be expressed in terms of
the unconditional SNR &, as follows:

_ ElXil
Sk = Fa00 .
— K\ E[XgIHT]
= P(HF) ) (82)
= (1 - qréx
Therefore, the conditional SNR &}, is related to the unconditional SNR &, by:
fe = (83)



Substituting eqn. (80) in eqn. (76) and after some algebraic manipulations, we express the a
posteriori probability of speech presence as:

k _ 1-9gk
PV (@) = g avthon ) (84)
Where v = iy (85)
k f],(‘}'l k

It is interesting to note that when &j, is large, suggesting that speech is surely present,
P (H{‘|Y(wk)) ~ 1, as expected. On the other hand, when &, is extremely small, P (H{‘|Y(a)k)) ~1-—
gk, i-e., it is equal to the a priori probability of speech presence, P(Hf).

The final linear-MMSE estimator that incorporates signal presence uncertainty has the form:

X =P (Hf|Y(wk)G(€k,Vk)) le=; Vi

— 1-qg I
T 1-qitar(1+E)exp (—vi) G (e ¥iedYie (86)

Where G (&g, vy) is the gain function defined in eqn. (64b) but with &, replaced with &;.. Note
that if qx = 0, then P(H{‘|Y(wk)) = 1 and the preceding estimator reduces to the original linear-

MMSE estimator. A comparison between the MMSE estimators that incorporated signal-presence
uncertainty with the original MMSE estimator indicated that the former estimator resulted in better
speech quality and lower residual noise.

2.9.Incorporating speech-presence uncertainty in Log-MMSE Estimators:

Using a similar procedure, we can derive the log-MMSE estimator that takes into account signal-
presence uncertainty. Following eqn. (75), we have:

log Xy = E(log Xy |Y (wy), HF)P(H¥|Y (w)) (87)
And after solving for X}, we obtain:

k
)?k _ (eE(long|Y(wk),H{‘))P(H1ly(wk))

(88)

The exponential term in the parenthesis is the log-MMSE estimator and can also be expressed using eqgn.
(73) as:

R = [Groa(Er, Vi)Y PHENY (@1) (89)
k S. k' Vk) 1k

Note that the a posteriori probability term P(H¥|Y (w},)) is no longer multiplicative as it was in
egn. (86). Simulation showed that the preceding estimator did not result in any significant
improvements over the original log-MMSE estimator. For this reason the following multiplicatively
modified estimator was suggested.



Xy = [GrsaEro viDIP(HEY (wp) Yy (90)

Where P(HF|Y (wy)) is defined in eqn. (84) and G54 (¢, vy,) is given by eqn. (79)

I l; f’ 1 fooet
GGy = e L7 ) o

And &, v, are given by eqn. (83) and eqn. (85), respectively.

The estimator given by egn. (91) is suboptimal because the probability term P(Hf|Y(a)k)) was
forced to be multiplicative. Starting from the original binary speech model given by:

X = E(Xe Ve, HOP(HE|Y) + E(Xp |Yie, HE)P(HE Yy ) (92)

Taking log on both sides of eqn. (92), we have:
log £ = E[log Xy |Y (), HE] P (HEIY (wi0)) + E[log XielY (i), HE]P (HEIY (wr)) — (93)

Where P (H(’)‘|Y(wk)) =1-—P (H{‘|Y(wk)) denotes the a posteriori probability of speech absence. The

second term (E[long|Y(wk),H(’§]) was previously assumed to be zero under hypothesis HY. If we
now assume that this term is not zero but very small, then we get:

X = L0 XilY (@i HEP(HE 1Y (i) Ellog Xil¥ (wi) HEIP(HE 1Y (@)
k k
_ (eE[logka(wk).H{‘])P(”l'Y(“”‘)) (c*lom v win )”(Hol“wk)) 00

The first exponential in parenthesis is the original log-MMSE estimator and can be expressed as
Grsa(&k, vi)Yy , and the second exponential in parenthesis is assumed to be small and is set to G, Y »
where G, is a small value. The preceding estimator then becomes:

~ k k
Xy = [GrsaCEx, Vk)Yk.]P(H1 ¥ @) [Gminyk]P(Ho I¥wi)

_ [GLSA(Sk’Vk)P(H{‘w(wk))Gmml—P(H{‘w(wk))] YkP(th(wk))Ykl—P(H{‘w(wk)) (95)
= [GLSA e Vk)P(Hfly(wk))Gminl_P(Hfly(wk))] Yy

= Gorsa(Sxr Vi) Yi

Note that the new gain function, denoted by G154 (&x, Vi), is now multiplicative. Comparisons
between the preceding optimally modified log-spectrum amplitude (OLSA) estimator and the
multiplicatively modified LSA estimator showed that the OLSA estimator yielded better performance in
terms of objective segmental SNR measures. The advantage was more significant at low SNR levels.



2.10. Implementation Issues Regarding A priori SNR Estimation:

In section 2.52, the decision-directed approach for estimating the a priori SNR &, (m) (eqn. 63).
Under speech-presence uncertainty, é’k(m) is modified by dividing 1 — qi (eqn.83). Several studies
have noted, however, that this division might degrade the performance. In [18], it was shown that it is
always preferable to use &, (m) rather than &,(m)/1 — qy. For that reason, the original estimate &, (m)
is often used in both the gain function (e.g., G154 (éx, Vx)) and the probability term P(H¥|Y (wy)) eqn.
(84).

Alternatively, a different approach can be used to estimate &, and y; under speech-presence
uncertainty [26]. The a priori SNR estimate é’k(m) is first obtained using the decision-directed approach,
and then weighted by P(H¥|Y (wy,)) as follows:

& (m) = (PHFY (01)))ék (m) (96)

Similarly, the a posteriori SNR estimate ¥, (m) at frame m is weighted by P(H¥|Y (w)):
i(m) = (P(HE|Y (@))) vie(m) (97)
The new estimate &, (m) and 7 (m) are then used to evaluate the gain function e.g., G(fk, )7k).
2.10.1. Methods for estimating the a priori probability of speech absence:

In the preceding methods, the a priori probability of speech absence, i.e., g, = P(H(’)"‘) was
assumed to be fixed, and in most cases it was determined empirically. In [6], g was set to 0.5 to address
the worst-case scenario in which speech and noise are equally likely to occur. In [4], g was empirically
set to 0.2 based on listening tests. In running speech, however, we would expect g to vary with time and
frequency, depending on the words spoken. Improvements are therefore expected if we could
somehow estimate g from the noisy speech signal.

Two methods for estimating g were proposed in [19]. The first method was based on comparing
the conditional probabilities of the noisy speech magnitude, assuming that speech is absent or present.

2Y Y2 +x? 2XRY
P(YelHt) = Ad(lt) exp (_ ;d(k;) lo (Adlzk;() (98)
2
P(VlHE) = s exp (= 72-) (99)

Using above conditional probabilities a binary decision b;, was made for frequency bin k according to:

if P (Yl HE) > (YielH)) then
b, = 0 (speech present)

Else (100)
b;, = 1 (speech absent)

End



After making the approximation &, = X7 /1,(k) in eqn. (98), the preceding condition can be simplified
and expressed in terms of &, and y;, alone. More precisely, eqn. (100) becomes:

If exp(—&) 1o (24/vék) > 1 then
b, = 0 (speech present)
Else (101)
b, = 1 (speech absent)
End
The a priori probability of speech absence for frame m, denoted as q; (m), can then be obtained

by smoothing the values of b, over past frames:
qr(m) = chy + (1 — c)gqp(m — 1) (102)

Where ¢ is a smoothing constant which was set to 0.1 in [19]. This method for determining the
probability of speech absence can be considered as a hard-decision approach, in that the condition in
eqgn. (101) yields a binary value-speech is either present or absent. It is shown that, the residual noise is
reduced substantially after incorporating speech-presence uncertainty. This, however, may come at a
price: speech distortion.

3. New proposed algorithm:

In this section a Harmonic wavelet transform is used to realize sub bands using DFT and DCT
coefficients. Though the work based on DFT harmonic wavelet transform exists in literature but limited
to MMSE2 methods [2]. However in this document MMSE1 and MMSE?2 is considered and also work [2]
does not mention about DCT harmonic wavelet transform and its implementation.

3.1. DFT-Harmonic Wavelet Transform (DFTWHT)

The continuous wavelet transformation (CWT) of a signal x(t) is given by
_ ) « (t=D
W (b,a) = lal™/2 [ x(®) " (7 dt (103)

Parsevals theorem allows the formulation of eqn. (109) in the frequency domain as

1
-1

+2_

21

We(b,a) = lal*z = [7 X(w) " (aw)e/*’dw (104)

Therefore, the wavelet transformation can be calculated by windowing the spectrum X (w) with ¥*(aw)
and inverse transformation:

Wy (b, @) = |alzP~ {X ()" (aw) } (105)

Furthermore, the Fourier transform 1 (w) of the mother wavelet Y (t) is chosen to be constant in a
limited frequency range and zero outside:

1, wg —wy <w < wy+ wy

106
’ ow (106)

pow) = |



The corresponding wavelet in the time-domain becomes

&sin (wg

P(t) = D gjwot (107)

1 wgt

For the transformation of discrete signals eqgn. (105) becomes

_ L
Wy (b, a) = lal2FH{X(Q)yY"(a) } (108)
Where () is the Fourier Transform of the sampled wavelet Y(kT,).

In a practical realization of the wavelet-transformation by eqn. (108) for a finite block
x(k),k=0,..N —1, the DFT of length M=N is used. The windowing is carried out by setting those
discrete spectral values to zero which are not in the passband of the corresponding wavelet. After that
the modified spectrum will be transformed with the IDFT of length M. In such a way a redundant
wavelet-transformation is generated, because for every frequency band M wavelet- coefficients are
calculated.

For a wavelet-representation of x(k) with reduced redundancy the sampling rates can be fitted
to the bandwidths of the wavelets. A simple way is to transform only M, non-zero values of the
modified spectrum with an IDFT of length M,, < M. A block diagram of realizing the wavelet
transformation is shown in Figure.1 with a block length of M = 32 and one frequency band per octave.
Because of the Hermitean symmetry of the DFT for real signals only half of the spectral values have to
be considered.
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Fig.1. Realization of the harmonic wavelet transform by DFTs



3.2. DCT-Harmonic Wavelet Transform (DCTWHT)
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Fig.2. Realization of the harmonic wavelet transform by DCTs

2(k)

It should be noted that in case of DCT based harmonic wavelet transform structure as shown in

Figure.2. Hermitean symmetry does not exist as shown by cross mark, since DCT by itself gives a real

transform making the structure computationally much simpler.

The reconstruction of the time signal is implemented with corresponding operations in inverse order.
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Fig.3. White noise superimposed results (DFT) (0dB)-
Speech-1: A) Clean B) Noisy C) ML D) MSS E) PSS F) WF
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Fig.4. White noise superimposed results (DFT) (0dB)-
Speech-1: A) Clean B) Noisy C) ML D) MSS E) PSS F) WF G)
MMSE H) MMSE (SPU) 1) MMSE-Log J) MMSE-Log (SPU)
K) MMSE-HWT L) MMSE-HWT (SPU) M) MMSE2 N)
MMSE2 (SPU) O) MMSE2-HWT P) MMSE2-HWT (SPU)




Simulation Results (Pink Noise)-DFT
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Fig.5. Pink noise superimposed results (DFT) (OdB)-
Speech-1: A) Noisy B) ML C) MSS D) PSS E) WF F) MMSE1
G) MMSE1 (SPU) H) MMSE-Log 1) MMSE-Log (SPU) J)
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Fig.6. Pink noise superimposed results (DFT) (0dB)-
Speech-2: A) Noisy B)ML C) MSS D) PSS E) WF F) MMSE1
G) MMSE 1(SPU) H) MMSE-Log 1) MMSE-Log (SPU) J)
MMSEL-HWT K) MMSEL-HWT (SPU) L) MMSE2 M)
MMSE2 (SPU) N) MMSE2-HWT O) MMSE2-HWT (SPU)




Simulation Results (White Noise)-DCT
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Fig.7. White noise superimposed results (DFT) (0dB)-
Speech-1: A) Clean B) Noisy C) ML D) MSS E) PSS F) WF
G) MMSE1 H) MMSE1 (SPU) ) MMSE-Log J) MMSE-Log
(SPU) K) MMSE1-HWT L)MMSE1-HWT (SPU) M) MMSE2
N) MMSE2 (SPU) O) MMSE2-HWT P) MMSE2-HWT (SPU)
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Fig.8. White noise superimposed results (DFT) (0dB)-
Speech-1: A) Clean B) Noisy C) ML D) MSS E) PSS F) WF G)
MMSE H) MMSE (SPU) 1) MMSE-Log J) MMSE-Log (SPU)
K) MMSEL-HWT L) MMSEL-HWT (SPU) M) MMSE2 N)
MMSE2 (SPU) O) MMSE2-HWT P) MMSE2-HWT (SPU)




Simulation Results (Pink Noise)-DCT
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Fig.9. Pink noise superimposed results (DCT) (0dB)-
Speech-1: A) Noisy B) ML C) MSS D) PSS E) WF F) MMSE1
G) MMSEL (SPU) H) MMSE-Log 1) MMSE-Log (SPU) J)
MMSEL-HWT K) MMSEL-HWT (SPU) L) MMSE2 M)
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Fig.10. Pink noise superimposed results (DCT) (0dB)-
Speech-2: A) Noisy B) ML C) MSS D) PSS E) WF F) MMSE1
G) MMSE 1(SPU) H) MMSE-Log 1) MMSE-Log (SPU) J)
MMSEL-HWT K) MMSEL-HWT (SPU) L) MMSE2 M)
MMSE2 (SPU) N) MMSE2-HWT O) MMSE2-HWT (SPU)




Enhancement
Methods using

Speechl: “This changes formula to an

Speech2: “AEIOU”

DFT transform Equation”
White Pink White Pink
MSE SNR MSE SNR MSE SNR MSE SNR
ML 0.363 4.40 0.432 3.64 0.289 5.39 0.273 5.62
MSS 0.348 4,57 0.341 4.66 0.090 10.39 0.142 8.45
WF 0.316 4.99 0.301 5.21 0.081 10.85 0.122 9.10
PSS 0.302 5.19 0.283 5.48 0.082 10.47 0.111 9.52
MMSE1 0.275 5.59 0.260 5.84 0.048 13.12 0.096 10.16
MMSE1 (SPU) 0.276 5.58 0.263 5.78 0.047 13.20 0.095 10.17
MMSE-Log 0.253 5.96 0.269 5.69 0.047 13.20 0.095 10.19
MMSE-Log (SPU) 0.248 6.05 0.282 5.48 0.049 13.08 0.096 10.14
MMSE1-HWT 0.253 5.67 0.285 5.45 0.046 13.37 0.086 10.61
MMSE1IHWT(SPU) | 0.211 5.97 0.277 5.57 0.044 13.52 0.082 10.82
MMSE2 0.291 5.35 0.250 6.01 0.082 10.82 0.129 8.89
MMSE2 (SPU) 0.270 5.67 0.240 6.28 0.076 11.47 0.122 9.11
MMSE2-HWT 0.276 5.58 0.221 6.55 0.091 11.45 0.117 9.31
MMSE2HWT(SPU) | 0.258 5.87 0.211 6.75 0.082 10.84 0.111 9.53
Table.1. Comparison of DFT results for various speech enhancement methods.
Enhancement
Methods using | Speechl: “This changes formula to an Speech2: “AEIOU”
DCT transform Equation”
White Pink White Pink
MSE SNR MSE SNR MSE SNR MSE SNR
ML 0.469 3.28 0.489 3.10 0.328 4.83 0.306 5.13
MSS 0.356 4.48 0.362 4.40 0.096 10.17 0.130 8.85
WF 0.347 4.59 0.330 4.81 0.109 9.62 0.120 9.18
PSS 0.348 4.57 0.326 4.85 0.133 8.73 0.124 9.06
MMSE1 0.249 6.02 0.234 6.30 0.051 12.85 0.099 10.03
MMSE1 (SPU) 0.254 5.95 0.238 6.22 0.052 12.80 0.102 9.89
MMSE-Log 0.246 6.07 0.246 6.07 0.052 12.80 0.099 10.02
MMSE-Log (SPU) 0.256 5.91 0.256 5.91 0.060 12.21 0.113 9.44
MMSE1-HWT 0.238 5.83 0.240 6.19 0.050 12.94 0.099 10.0
MMSE1IHWT(SPU) | 0.229 5.98 0.240 6.37 0.050 12.93 0.101 9.92
MMSE2 0.348 4.57 0.270 5.67 0.145 8.37 0.172 7.62
MMSE2 (SPU) 0.301 5.20 0.274 5.61 0.137 8.62 0.184 7.34
MMSE2-HWT 0.299 4.77 0.230 6.37 0.136 8.65 0.150 8.21
MMSE2HWT(SPU) | 0.248 5.21 0.220 6.56 0.125 9.02 0.153 8.13

Table.2. Comparison of DCT results for various speech enhancement methods.




Methods Speechl Speech2

Constant Seg Smooth | ResIn. | Sample BW Seg Smooth ResIn. | Sample BW

Parameters Length Factor Time freq. Length Factor Time freq.

(ms) (ms)

ML
MSS 512 0.98 1.9 31.25 | 15.62 | 512 0.98 1.9 39.06 | 19.53
PSS
WEF
MMSE1
MMSE-Log 256 0.98 3.9 62.5 31.25 | 256 0.98 3.9 78.12 | 39.06
MMSE1-HWT-DCT
MMSE1-HWT-DFT 512 0.98 1.9 31.25 | 15.62 512 0.98 1.9 39.06 19.53
MMSE2 128 0.98 7.8 125 62.5 128 0.98 7.8 156.2 | 78.12
MMSE2-HWT

Table.3. Parameter constants used for simulation

NOTE: A gain of 15 is set for noise estimate to be subtracted from noisy speech for methods ML, MSS,

PSS, and WF.




4.0. Description of simulation results:

In this project work, we have carried out Research and MATLAB simulations of various speech
enhancement algorithms. The methods used to study include following a) Maximume-Likelihood, Eqn.29
(ML), 2) Magnitude Spectral Subtraction, Eqn.11 (MSS), 3) Power Spectral Subtraction, Eqn.33 (PSS), 4)
Wiener Filter (WF), Eqn.36 and 5) MMSE methods based on Ephraim-Mallah, MMSE1, (using Eqn.59 and
Egn. 63) and MMSE2, (using Eqn.58b and 63). In this work most of the theory, mathematical derivations
and references is taken from the book speech enhancement theory and Practice by Philipos C. Loizou.
Simulation work is carried out for two kinds of noise white Gaussian and Pink (filtered white noise,
which is also characteristic of the aviation noise) noise using DFT/DCT transforms. The speech source
files are taken from TIMIT database and noise files from NOISEX-92 database. The various constant
parameters used for entire simulation for methods under discussion listed in Table.3. Here sub band are
realized using harmonic wavelet transform.

In Fig.3, Fig.4, shown are the result of DFT based speech enhancement methods to noisy speech
corrupted by white noise at 0dB level for speech-1 (sampled at 8KHz) and speech-2 (sampled at 10KHz)
respectively. A gain of 15 (only for methods ML, MSS, WF, PSS) for noise estimate to be subtracted from
noisy speech is fixed based on experimental observations. The MSS method suppression at low-SNR is
slightly lesser than PSS and WF. PSS method produced better results in terms of O/P-SNR but with
residual musical noise. WF on the other hand showed O/P-SNR slightly lesser than PSS but with reduced
musical noise due to its high suppression factor.

MMSE1 methods, Fig.3, (G) and (H) (single and sub band) produced same audible effects
compared to that of WF but with lesser speech distortion and musical noise, however produced highest
O/P-SNR for both white and pink noise among all the methods as can be seen from table.1 and table.2.
MMSE2 methods even though maintained certain flooring (single and sub band) removed musical noise
to the maximum extent compared to all methods including MMSE1 also improved O/P-SNR but lesser
than MMSE1. MMSE2-HWT under Speech Presence Uncertainty conditions further improved O/P-SNR
and better speech intelligibility.

Fig.3, Methods (G), (H), (1), (J) waveforms though look similar but produced increase in O/P-SNR
and improved audible characteristics. In (I) and (J) logarithmic MMSE method proved better in terms of
O/P-SNR and further reduced back ground noise but with less musical noise in comparison (A)-(H).

Fig.3, Methods (K) and (L) are sub band realization of methods (G) and (H) and resulted best
performance by making use of short time-frequency localizations, as tabulated in Table.1 and Table.2.
Fig.3. (O) and (P) are the sub band realization of methods (M), (N) again shown better performance in
terms of O/P-SNR and reduced musical noise and sound speech more or less natural.

It is worth noting that in figures, marked red indicates the O/P-SNR improvement in the case of
MMSE2 methods. The regions marked clearly show the dense of speech energy with envelopes
comparable to clean speech.



Fig.4. shows results for second speech under consideration at 10 KHz. Here again the methods
behave similar and same explanation holds as for speech1 results.

In Fig.5, Fig.6, shown is the simulation carried out for pink noise. Table.1. and Table.2 though
reflect good O/P SNR values especially for speech1 (8KHz) but distortion in speech is very noticeable and
also suffered by more audible musical noise. The increase in O/P-SNR is observed due to lower O/P-
noise, obtained by subtracting clean speech from enhanced speech also due to correlation of pink noise
samples with speech samples than white noise makes this subtraction reduce O/P noise and result in
increase of O/P SNR. Performance behavior of individual methods is similar to that of white noise as can
be seen from Table.1 and Table.2.

In Fig.7, Fig.8, shown are the result of DCT based speech enhancement methods to noisy speech
corrupted by white noise at 0dB level for speech-1 (sampled at 8KHz) and speech-2 (sampled at 10KHz)
respectively. The results for pink noise are shown in Fig.9, Fig.10 for two speech signals. These results in
comparison to DFT counterparts retained most of the speech envelope with less distortion except for
the methods MMSE1-HWT that distorted some low amplitude signal. Further with DFT enhanced speech
signal heard more natural with negligible musical noise, however DCT even though sound natural but
had some musical noise but far less in comparison to simple method of speech enhancement (A-F). It is
also noted that the O/P SNR of MMSE1 and MMSE2 methods in single and sub band behave almost
similar with slight increase with sub band, however with DFT a noticeable difference in O/P SNR values
with single and sub band approach.

To summarize, the overall simulation results for methods under consideration are shown
Table.1 and Table.2 for DFT and DCT respectively. It can be observed that DFT performance is better
than DCT. In comparison to MMSE1 and MMSE2, MMSE1 performed better than MMSE2 in terms of
O/P-SNR values however with background musical noise but with MMSE2 residual background noise
even though present was not modified and didn’t produce musical noise effect, however for pink noise
certain amount of musical noise can be heard in all methods. Further single grouping of DFT/DCT
coefficients for MMSE1, MMSE2 doesn’t produce good results in comparison to sub band coefficients
for the same method using Harmonic Wavelet Transform (HWT) methods.

5.0. Conclusion:

In this work various speech enhancement algorithms performance superimposed with white and
pink noise at 0dB level is considered to enrich CVR analysis capability. Here pink noise is considered
because it characterizes aviation noise. Use of combination of present algorithms along with simple and
computationally efficient harmonic wavelet transform, it is found that improvement in performance
measures like O/P-SNR,MSE and audibility which are essential for aviation applications like CVR analysis.
Further this project has scope for research and development for on-board and real-time speech
communication enhancement for aviation industries.
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Fig.11. probability distribution comparison of DFT and DCT Coefficients




Description:

It can be argued that the DCT based performance is better than the DFT methods. In this context
it is important to consider that simply changing transform from DFT to DCT for analysis is not sufficient.
It is seen that performance of any speech enhancement algorithm depends on the kind of computation
involved in transform domain using DFT and DCT. In case of spectral subtraction using DCT, the
performance measure mean square error (MSE) when computed in transform domain over segments
shows better than DFT this observation is in coincidence with the DCT properties like better transform
domain resolution, speech spectral energy compaction, smooth truncations and non-correlated phase of
the speech [20]. However the MSE between the overall enhanced signal and clean signal showed DFT
performance is better than DCT. This contrasting behavior between DFT and DCT is further explored
considering the distributions of transform coefficients and found that the DFT spectrum probability
density function (pdf) have lesser MSE between original and enhanced spectrum than that of DCT as
indicated in MSE VS PDF table in Fig.11, for sinusoid and speech signal. In the work [21] related to
denoising using DFT/DCT have mentioned that given only the noisy observations and estimated noise
squared-spectral components, the phase of clean speech cannot be anymore exactly reconstructed
using real-valued transform. Further it is noted that with DCT noise estimation (which is very essential in
any speech enhancement algorithm that characterizes the background noise) is poor in terms of much
lower amplitude distribution of coefficients which do not subtract effectively from noisy coefficients
effectively. Authors [22] have found that noisy speech and clean speech transform coefficients follow
Gaussian and Laplace distribution respectively. These statistical based algorithms shows that Laplacian-
distribution has yielded better results than that of Gaussian distribution. The work [22] has been further
explored with DCT transform [23] to see better reduction in residual noise. These works do suggest that
the kind of distribution of DFT/DCT matters in speech enhancement.
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