518,244 research outputs found

    Isotope dependence of band-gap energy

    Full text link
    The results of the quantitative investigations of the renormalization of the absorption edge of different compounds by the isotope effect are described.Comment: 7 pages, 3 figure

    Fractional charge perspective on the band-gap in density-functional theory

    Full text link
    The calculation of the band-gap by density-functional theory (DFT) methods is examined by considering the behavior of the energy as a function of number of electrons. It is found that the incorrect band-gap prediction with most approximate functionals originates mainly from errors in describing systems with fractional charges. Formulas for the energy derivatives with respect to number of electrons are derived which clarify the role of optimized effective potentials in prediction of the band-gap. Calculations with a recent functional that has much improved behavior for fractional charges give a good prediction of the energy gap and also ϵhomo≃−I\epsilon_{{\rm homo}}\simeq-I for finite systems. Our results indicate it is possible, within DFT, to have a functional whose eigenvalues or derivatives accurately predict the band-gap

    Correlations in a band insulator

    Full text link
    We study a model of a covalent band insulator with on-site Coulomb repulsion at half-filling using dynamical mean-field theory. Upon increasing the interaction strength the system undergoes a discontinuous transition from a correlated band insulator to a Mott insulator with hysteretic behavior at low temperatures. Increasing the temperature in the band insulator close to the insulator-insulator transition we find a crossover to a Mott insulator at elevated temperatures. Remarkably, correlations decrease the energy gap in the correlated band insulator. The gap renormalization can be traced to the low-frequency behavior of the self-energy, analogously to the quasiparticle renormalization in a Fermi liquid. While the uncorrelated band insulator is characterized by a single gap for both charge and spin excitations, the spin gap is smaller than the charge gap in the correlated system.Comment: 7 pages, 7 figure

    Vacancy induced energy band gap changes of semiconducting zigzag single walled carbon nanotubes

    Full text link
    In this work, we have examined how the multi-vacancy defects induced in the horizontal direction change the energetics and the electronic structure of semiconducting Single-Walled Carbon Nanotubes (SWCNTs). The electronic structure of SWCNTs is computed for each deformed configuration by means of real space, Order(N) Tight Binding Molecular Dynamic (O(N) TBMD) simulations. Energy band gap is obtained in real space through the behavior of electronic density of states (eDOS) near the Fermi level. Vacancies can effectively change the energetics and hence the electronic structure of SWCNTs. In this study, we choose three different kinds of semiconducting zigzag SWCNTs and determine the band gap modifications. We have selected (12,0), (13,0) and (14,0) zigzag SWCNTs according to n (mod 3) = 0, n (mod 3) = 1 and n (mod 3) = 2 classification. (12,0) SWCNT is metallic in its pristine state. The application of vacancies opens the electronic band gap and it goes up to 0.13 eV for a di- vacancy defected tube. On the other hand (13,0) and (14,0) SWCNTs are semiconductors with energy band gap values of 0.44 eV and 0.55 eV in their pristine state, respectively. Their energy band gap values decrease to 0.07 eV and 0.09 eV when mono-vacancy defects are induced in their horizontal directions. Then the di-vacancy defects open the band gap again. So in both cases, the semiconducting-metallic - semiconducting transitions occur. It is also shown that the band gap modification exhibits irreversible characteristics, which means that band gap values of the nanotubes do not reach their pristine values with increasing number of vacancies

    Semiconductor resonator solitons above band gap

    Full text link
    We show experimentally the existence of bright and dark spatial solitons in semiconductor resonators for excitation above the band gap energy. These solitons can be switched on, both spontaneously and with address pulses, without the thermal delay found for solitons below the band gap which is unfavorable for applications. The differences between soliton properties above and below gap energy are discussed.Comment: 4 pages, 7 figure

    Energy Band Gap Engineering of Graphene Nanoribbons

    Full text link
    We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurements show larger energy gaps opening for narrower ribbons. The sizes of these energy gaps are investigated by measuring the conductance in the non-linear response regime at low temperatures. We find that the energy gap scales inversely with the ribbon width, thus demonstrating the ability to engineer the band gap of graphene nanostructures by lithographic processes.Comment: 7 pages including 4 figure

    The effect of substituted benzene dicarboxylic acid linkers on the optical band gap energy and magnetic coupling in manganese trimer metal organic frameworks

    Get PDF
    We have systematically studied a series of eight metal-organic frameworks (MOFs) in which the secondary building unit is a manganese trimer cluster, and the linkers are differently substituted benzene dicarboxylic acids (BDC). The optical band gap energy of the compounds vary from 2.62 eV to 3.57 eV, and theoretical studies find that different functional groups result in new states in the conduction band, which lie in the gap and lower the optical band gap energy. The optical absorption between the filled Mn 3d states and the ligands is weak due to minimal overlap of the states, and the measured optical band gap energy is due to transitions on the BDC linker. The Mn atoms in the MOFs have local moments of 5 mu B, and selected MOFs are found to be antiferromagnetic, with weak coupling between the cluster units, and paramagnetic above 10 K
    • …
    corecore