2,859 research outputs found

    Novel Approach using Robust Routing Protocol in Underwater Acoustic Wireless Sensor Network with Network Simulator 2: A Review

    Get PDF
    In recent year wireless sensor network has been an emerging technology and promising technology in unveiling the riddle of the marine life and other underwater applications. As it is a permutation of computation, sensing and communication. In the 70% of the earth a huge amount of unexploited resources lies covered by oceans. To coordinate interact and share information among themselves to carry out sensing and monitoring function underwater sensor network consists number of various sensors and autonomous underwater vehicles deployed underwater. The two most fundamental problems in underwater sensor network are sensing coverage and network connectivity. The coverage problem reflects how well a sensor network is tracked or monitored by sensors. An underwater wireless sensor networks is the emerging field that is having the challenges in each field such as the deployment of nodes, routing, floating movement of sensors etc. This paper is concerned about the underwater acoustic wireless sensor network of routing protocol applications and UW-ASNs deployments for monitoring and control of underwater domains

    The improvements of power management for clustered type large scope wireless sensor networks2010

    Full text link
    Fuente AragĂłn, PDL. (2010). The improvements of power management for clustered type large scope wireless sensor networks2010. http://hdl.handle.net/10251/10244.Archivo delegad

    Horizontal trajectory based mobile multi-sink routing in underwater sensor networks

    Get PDF
    Scientific, commercial, exploration, and monitoring applications of underwater sensor networks have drawn the attention of researchers toward the investigation of routing protocols that are robust, scalable, and energy efficient. This has brought significant research in network layer routing protocols. Irrespective of the field of application it is desirable to increase network lifetime by reducing energy consumed by sensor nodes in the network or by balancing energy in the entire network. Energy balancing refers to the uniform distribution of the network’s residual energy such that all nodes remain alive for a long time. It requires uniform energy consumption by each sensor node in the network instead of the same node being involved in every transmission. In this paper, we discuss two routing methods for three-dimensional environments in which the water region under monitor is divided into subregions of equal height and each subregion has a sink. Nodes in the subregion send data to the sink designated for that subregion. The first method called static multi-sink routing uses static sinks and the second method called horizontal trajectory-based mobile multi-sink routing (HT-MMR) uses mobile sinks with a horizontal trajectory. Simulation results show that the proposed HT-MMR reduces average energy consumption and average energy tax by 16.69% and 16.44% respectively. HT-MMR is energy efficient as it enhances network lifetime by 11.11%
    • …
    corecore