4 research outputs found

    Biology-inspired Architecture for Situation Management

    Get PDF
    Situation Management is a rapidly developing science combining new techniques for data collection with advanced methods of data fusion to facilitate the process leading to correct decisions prescribing action. Current research focuses on reducing increasing amounts of diverse data to knowledge used by decision makers and on reducing time between observations, decisions and actions. No new technology is more promising for increasing the diversity and fidelity of observations than sensor networks. However, current research on sensor networks concentrates on a centralized network architecture. We believe this trend will not realize the full potential of situation management. We propose a new architecture modeled after biological ecosystems where motes are autonomous and intelligent, yet cooperate with local neighborhoods. Providing a layered approach, they sense and act independently when possible, and cooperate with neighborhoods when necessary. The combination of their local actions results in global effects. While situation management research is currently dominated by military applications, advances envisioned for industrial and business applications have similar requirements. NASA has requirements for intelligent and autonomous systems in future missions that can benefit from advances in situation management. We describe requirements for the Integrated Vehicle Health Management program where our biology-inspired architecture provides a layered approach and decisions can be made at the proper level to improve safety, reduce costs, and improve efficiency in making diagnostic and prognostic assessments of the structural integrity, aerodynamic characteristics, and operation of aircraft

    Communal Cooperation in Sensor Networks for Situation Management

    Get PDF
    Situation management is a rapidly evolving science where managed sources are processed as realtime streams of events and fused in a way that maximizes comprehension, thus enabling better decisions for action. Sensor networks provide a new technology that promises ubiquitous input and action throughout an environment, which can substantially improve information available to the process. Here we describe a NASA program that requires improvements in sensor networks and situation management. We present an approach for massively deployed sensor networks that does not rely on centralized control but is founded in lessons learned from the way biological ecosystems are organized. In this approach, fully distributed data aggregation and integration can be performed in a scalable fashion where individual motes operate based on local information, making local decisions that achieve globally-meaningful results. This exemplifies the robust, fault-tolerant infrastructure required for successful situation management systems

    Biology-Inspired Approach for Communal Behavior in Massively Deployed Sensor Networks

    Get PDF
    Research in wireless sensor networks has accelerated rapidly in recent years. The promise of ubiquitous control of the physical environment opens the way for new applications that will redefine the way we live and work. Due to the small size and low cost of sensor devices, visionaries promise smart systems enabled by deployment of massive numbers of sensors working in concert. To date, most of the research effort has concentrated on forming ad hoc networks under centralized control, which is not scalable to massive deployments. This thesis proposes an alternative approach based on models inspired by biological systems and reports significant results based on this new approach. This perspective views sensor devices as autonomous organisms in a community interacting as part of an ecosystem rather than as nodes in a computing network. The networks that result from this design make local decisions based on local information in order for the network to achieve global goals, thus we must engineer for emergent behavior in wireless sensor networks. First we implemented a simulator based on cellular automata to be used in algorithm development and assessment. Then we developed efficient algorithms to exploit emergent behavior for finding the average of distributed values, synchronizing distributed clocks, and conducting distributed binary voting. These algorithms are shown to be convergent and efficient by analysis and simulation. Finally, an extension of this perspective is used and demonstrated to provide significant progress on the noise abatement problem for jet aircraft. Using local information and actions, optimal impedance values for an acoustic liner are determined in situ providing the basis for an adaptive noise abatement system that provides superior noise reduction compared with current technology and previous research efforts

    Towards Aggregating Time-Discounted Information in Sensor Networks

    Get PDF
    Sensor networks are deployed to monitor a seemingly endless list of events in a multitude of application domains. Through data collection and aggregation enhanced with data mining and machine learning techniques, many static and dynamic patterns can be found by sensor networks. The aggregation problem is complicated by the fact that the perceived value of the data collected by the sensors is affected by many factors such as time, location and user valuation. In addition, the value of information deteriorates often dramatically over time. Through our research, we already achieved some results: A formal algebraic analysis of information discounting, especially affected by time. A general model and two specific models are developed for information discounting. The two specific models formalize exponetial time-discount and linear time-discount. An algebraic analysis of aggregation of values that decay with time exponentially. Three types of aggregators that offset discounting effects are formalized and analyzed. A natural synthesis of these three aggregators is discovered and modeled. We apply our theoretical models to emergency response with thresholding and confirm with extensive simulation. For long-term monitoring tasks, we laid out a theoretical foundation for discovering an emergency through generations of sensors, analysed the achievability of a long-term task and found an optimum way to distribute sensors in a monitored area to maximize the achievability. We proposed an implementation for our alert system with state-of-art wireless microcontrollers, sensors, real-time operating systems and embedded internet protocols. By allowing aggregation of time-discounted information to proceed in an arbitrary, not necessarily pairwise manner, our results are also applicable to other similar homeland security and military application domains where there is a strong need to model not only timely aggregation of data collected by individual sensors, but also the dynamics of this aggregation. Our research can be applied to many real-world scenarios. A typical scenario is monitoring wildfire in the forest: A batch of first-generation sensors are deployed by UAVs to monitor a forest for possible wildfire. They monitor various weather quantities and recognize the area with the highest possibility of producing a fire --- the so-called area of interest (AoI). Since the environment changes dynamically, so after a certain time, the sensors re-identify the AoI. The value of the knowledge they learned about the previous AoI decays with time quickly, our methods of aggregation of time-discounted information can be applied to get update knowledge. Close to depletion of their energy of the current generation of sensors, a new generation of sensors are deployed and inherit the knowledge from the current generation. Through this way, monitoring long-term tasks becomes feasible. At the end of this thesis, we propose some extensions and directions from our current research: Generalize and extend the special classes of Type 1 and Type 2 aggregation operators; Analyze aggregation operator of Type 3 and Type 4, find some special applicable candidates; Data aggregation across consecutive generations of sensors in order to learn about events with discounting that take a long time to manifest themselves; Network implications of various aggregation strategies; Algorithms for implementation of some special classes of aggregators. Implement wireless sensor network that can autonomously learn and recognize patterns of emergencies, predict incidents and trigger alarms through machine learning
    corecore