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Abstract – Situation management is a rapidly evolving 
science where managed sources are processed as real-
time streams of events and fused in a way that 
maximizes comprehension, thus enabling better 
decisions for action. Sensor networks provide a new 
technology that promises ubiquitous input and action 
throughout an environment, which can substantially 
improve information available to the process. Here we 
describe a NASA program that requires improvements 
in sensor networks and situation management. We 
present an approach for massively deployed sensor 
networks that does not rely on centralized control but is 
founded in lessons learned from the way biological 
ecosystems are organized. In this approach, fully 
distributed data aggregation and integration can be 
performed in a scalable fashion where individual motes 
operate based on local information, making local 
decisions that achieve globally-meaningful results. This 
exemplifies the robust, fault-tolerant infrastructure 
required for successful situation management systems. 
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1 Introduction 
 
Situation management is a rapidly evolving science 

supported largely by military requirements.  Military 
conflicts are increasing in mobility, velocity, complexity, 
and the dynamic nature of their situations. More effective 
methods are needed for situation monitoring, awareness, 
and control to provide command options, predict probable 
situation outcomes, and analyze potential threats and 
vulnerabilities. However, such requirements are not 
limited to military applications. Indeed, any activity that 
requires correct, decisive action in a timely manner 
including homeland security, emergency/crisis 
management, manufacturing processes, financial 
management, medical, among many others, can benefit 
from the research in situation management [1].  

     The National Aeronautics and Space Administration 
(NASA) is researching how the techniques under 
development in situation management can contribute to 
future missions in Earth, planetary and space science, 
mission control, and vehicle/equipment health 
management. 

Jakobson et al. [1] describe the critical aspects of 
situation management as “managing and controlling 

sources of information, processing real-time or near real-
time streams of events, representing and integrating lower 
level events and higher level concepts, multi-source 
information fusion, information presentation that 
maximizes human comprehension, and reasoning about 
what is happening and what is important.” They define a 
situation as a “large number of dynamic objects that 
change state in time and space and engage each other into 
complex spatio-temporal relationships”. The state of an 
object is expressed as a set of parameter values. The 
situation is a state of one or more objects at an assigned 
time. Therefore, two situations are distinguished by both 
the state of the objects and the time. Situations change as 
states and/or time changes. [2]. This presents major 
problems for managing situations: 
• Information freshness: If information is collected and 

time passes before a decision can be made using that 
information, the decision may be incorrect. 

• Information quality: Information may be redundant, 
incomplete, or irrelevant. 

• Information overload or starvation: Information may 
come in high volumes at times; little to none at other 
times. 

• Information fidelity: Analysis of many situations 
requires massive inputs that can only be acquired in 
situ. 

 
No new technology shows more promise for meeting 

these demands than sensor networks. Indeed, the small 
size and low cost of individual sensors make these 
networks ideally suited for massive, non-intrusive, and 
non-obtrusive deployment which can be critical for many 
situation management applications. However, the 
implementation of sensor networks simply as sources of 
input or as effectors will not solve, but actually contribute 
to, the problems listed above. Additionally, Jakobson et 
al. [1], list new problems posed by massive deployment of 
sensors: 
• Configuration of the network changes frequently. 
• Each node has limited computation, memory, power, 

and communication capabilities. 
• There can be a high rate of node and link failure. 
• Communication is limited by internode 

communication through multihop broadcasting. 
• Functionality is enhanced by or requires an optimal 

spatial distribution. 

https://ntrs.nasa.gov/search.jsp?R=20060027791 2019-08-29T22:07:28+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10518246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• Nodes are limited in situation recognition; the final 
operational situation must be compiled from fusion of 
input from a large numbers of nodes. 

 
This paper reports on our continuing work [3,4,5] in 

which we look at sensor networks in a novel way, 
motivated by our belief that in order to scale to massive 
deployment, sensor networks can benefit from lessons 
learned from the way biological ecosystems are organized. 
Indeed, in the presence of a massive deployment, sensor 
networks must behave as a community of organisms, 
where individual sensor nodes, or motes, operate 
asynchronously and autonomously in parallel. We focus 
on fundamental characteristics of future sensor networks 
that are not demonstrated by current implementations, yet 
are imperative for optimal use in situation management. 
More specifically, we demonstrate that in such a model, 
fully distributed data aggregation and integration can be 
performed in a scalable fashion in massively deployed 
sensor networks, where individual motes operate based on 
local information, making local decisions that are 
aggregated across the network to achieve globally-
meaningful effects. 

This approach mitigates many of the problems 
identified for massively deployed networks. Furthermore, 
this approach, with the benefit of rapidly increasing 
computational, power, and communication capabilities of 
motes, will mitigate many of the problems identified for 
managing situations by allowing much of the decision 
making process to occur closer to the source of 
information, improving the freshness of information and 
decisions. 

It is not our claim that the examples presented here 
directly apply to any problem of situation management, 
but rather that the application of sensor networks to 
situation management requirements may benefit from our 
alternate approach. Particularly in adversarial scenarios, 
centralized control of in situ networks, with its complex 
infrastructure and single points of failure, may be quickly 
defeated. Our decentralized approach is much more robust 
and fault tolerant and would, therefore, be much more 
difficult to disable. 

In Section 2, we describe a NASA program to develop 
technologies for aircraft health management. This 
provides an atypical example of a complex situation to be 
managed, yet has much in common with more 
conventional applications. In Section 3, we describe 
current sensor network research and implementations, 
identifying concerns about their direction for support of 
situation management. In Section 4, we describe our 
ecological model for sensor networks and how this 
approach leads to autonomous communities of motes that 
operate locally to support global goals. In Section 5 we 
discuss the general problem of data aggregation and the 
problems with a centralized model. In Section 6, we 
present our model for distributed averaging. In Section 7, 
we present our conclusions. 

2 Aircraft Health Management 
 
NASA’s Aviation Safety Program within its 

Aeronautics Research Mission Directorate is initiating a 

sub-program, Integrated Vehicle Health Management 
(IVHM) with the goals of improving safety, reducing 
costs, and improving performance in every aircraft class.  

Concerning safety, an examination of recent aircraft 
incidents and accidents reveals the need for such an effort. 
The Commercial Aviation Safety Team (CAST) [6,7] 
identified system/component failure or malfunction as the 
third leading cause of crashes in examining commercial 
jet airplane accidents worldwide from 1987 through 2004.  
They found other leading causes to be fire, ice, fuel, wind 
shear, and lightning. These classes of accidents were 
identified as causing 24% of the total of all accidents. 
Loss of control caused 26%, but hardware and software 
failures are often contributing factors in loss-of-control 
accidents. 

Examining data from US-registered transport aircraft 
accidents from 1980 to 2001, the National Transportation 
Safety Board (NTSB) [8] found 52% of hardware-induced 
accidents were aircraft systems related, 36% were caused 
by propulsion system components, and 10% were caused 
by failures in the airframe. Of these, approximately one 
third each was due to problems with landing gear, 
turbine/turboprop engines, and flight control systems. 

The Federal Aviation Administration (FAA) [9] 
examined 40,964 incidents involving US airplanes from 
1998 through 2003. They found that about 67% of 
incidents were caused by a combination of system and 
component failure and malfunction, fire/smoke, and 
power loss. 

CAST concluded that not all incidents and accidents 
were directly due to system failure but resulted from the 
failure of flight crews to: 
• correctly interpret, process, and cross-check 

available, relevant data, assess failure modes and 
analyze effects; 

• maintain aircraft system status awareness; 
• understand the impact of inoperative or degraded 

systems. 
 

Furthermore, sensors and other equipment failed to: 
• accumulate and present adequate trend information; 
• indicate impact and other damage; 
• indicate and prevent icing; 
• provide warning of unsafe flight critical systems. 

 
In providing solutions for these problems, more 

information is not the only requirement. CAST was 
concerned that warnings and equipment failure 
announcements presented to the crew should not cause a 
nuisance that would contribute to crew complacency. 
They also identified that part of the solution is to provide 
real time information to ground crews. 

In summary, the evidence reveals that a high percentage 
of aircraft accidents and incidents are caused directly by 
equipment failure or indirectly by the inability of crew to 
properly and timely manage situations of equipment 
failure. IVHM is tasked with developing technology that 
will mitigate both of these problems. We recognize that 
advances in both sensor network technology and situation 
management technologies are necessary to meet the goals 
of IVHM. 



Future aircraft will be designed to sense, control, 
communicate, and navigate with increasing levels of 
autonomy. Automatic health monitoring combined with 
self-healing systems in aircraft will not only improve 
safety but also performance, reliability, and predictability 
of service while reducing costs. IVHM is tasked with 
developing many of the technologies required for such 
future aircraft. An essential component is improving 
diagnostic capabilities that form the basis for prognostics 
in airframe, propulsion, and other aircraft systems. IVMH 
is investigating fundamental failure physics and associated 
effects of damage and degradation caused by 
environmental hazards. The application of situation 
management techniques using this knowledge steered by 
information collected real-time on operating 
characteristics will provide diagnostics that will determine 
the prognosis that is used for failure mitigation. From a 
systems perspective, IVHM also addresses challenges in 
communication and effective architectures to facilitate the 
integration of IVHM components with each other and 
with other vehicle systems. 

IVHM represents a constrained microcosm of the larger 
problem domains more generally associated with the 
traditional study of situation management. The problems 
associated with providing a successful IVHM 
environment mirror the more general problems associated 
with situation management. 

At its most fundamental level of implementation, IVHM 
is the concept of instrumenting an aerospace vehicle with 
a web of large numbers of sensors to report on the health 
of its constituent parts. The simplest architecture for such 
a web would have the multitude of sensors sending their 
data to a central computer for processing. The single 
central processor must perform all situation management 
functions: data reduction, conversion, fusion, and 
presentation to the pilot or flight engineer. This approach 
has a number of shortcomings: 
• Single point of failure is at the central computer. 
• Potentially large amounts of uninteresting data (e.g. 

current jet exhaust temperature) will unnecessarily 
burden the central computer. 

• Data that is most meaningful when viewed in 
conjunction with other data, rather than in isolation 
must be segregated and fused with other information 
for presentation. This consumes processor cycles and 
memory that could be used for other tasks. 

• Data that is not currently needed, or not important to 
the current mission, but needs to be made available to 
a different user at a later time will still flow to the 
central computer, further absorbing available 
processor capabilities: cycles and memory. 

 
We provide an alternative model, which is inspired by 

biological ecosystems. As we will demonstrate, we 
consider sensor motes as organisms interacting with their 
environment. They function autonomously, yet cooperate 
with local neighboring sensor motes. This architecture 
provides many advantages over the conventional, 
centralized approach: 

 
• Multiple, independent processors reduce the chance 

for catastrophic failure. 

• Multiple sensors may be logically joined to provide 
virtual sensors, which offer the potential for inferring 
data that would be otherwise unavailable. 

• Local sensors can hold data for alternate users, such 
as maintenance workers, without burdening the 
central processor, or flight crew with unnecessary, yet 
important detail. 

• Local sensor groups can rapidly make decisions in 
highly dynamic situations, such as flight anomalies, to 
respond to anomalies with suggested recovery or 
mitigation actions. 

 
We recognize that IVHM is more tightly constrained 

than larger, situation management environments, such as 
in battle management. However, the benefits of the 
ecological approach, which are clear for IVHM, seem to 
us to be appropriate for large-scale deployments of 
sensors and processors in an isomorphic manner. 
Distributing decision making to the proper level in the 
network will be the real challenge. 

Sensor networks may fulfill many of the requirements 
for IVHM and other situation management applications, 
but current research in sensor networks is not moving in a 
direction that will facilitate practical implementations. In 
the next section, we describe these limitations. 

3 Examples of sensor networks 
 
The recent flurry of research in sensor networks may be 

credited to the DARPA-sponsored SmartDust program 
whose goal was to make machines with self-powered 
sensing, computing and communication capabilities so 
small and inexpensive that they could be released into the 
environment in massive numbers [10]. These devices are 
called motes and serve as nodes in a sensor network 
[11,12]. As the motes are severely energy-constrained, 
they cannot transmit over long distances, restricting 
interaction to their immediate neighborhood.  

An examination of current implementations reveals both 
successes and limitations to the promises of sensor 
networks. In 2002, a sensor network was implemented on 
Great Duck Island, Maine [13]. The initial application was 
to monitor the microclimates of nesting burrows and, by 
disseminating the data worldwide, to enable researchers 
anywhere to non-intrusively monitor sensitive wildlife 
habitats. The sensor motes were placed in the habitat and 
formed a multi-hop network to pass messages back to a 
base station. The data was eventually passed by satellite to 
servers in Berkeley, CA, where it was distributed via the 
Internet to any interested viewer. The sensors periodically 
measured environmental factors and relayed the 
measurements to the base station. The largest deployment 
had 190 nodes up to 1000 feet from the nearest base 
station. 

The interested reader can examine other 
implementations [14,15,16]. What was novel about these 
approaches is the small size of the sensors and their 
wireless networking allowing inexpensive and unobtrusive 
installation directly into the environment. However, these 
demonstrations used between 6 and 800 motes, thus, they 
do not approach the high fidelity information architecture 
advertised by proponents of sensor networks. Will the 



techniques used scale to massive numbers? In these 
designs, behavior is predetermined, its results collected, 
and otherwise managed by a central authority. 

As current sensor networks are for the most part 
modeled after conventional networks under centralized 
control and involve a small number of motes, it is not 
clear that they provide a credible approximation of the 
massive deployment envisioned by the proponents of 
sensor networks [14,17]. Rather than adapting 
conventional techniques of centralized computer control, 
new techniques dependent on local cooperation among 
network nodes will lead to self-sustaining communities of 
machines with emergent behavior that autonomously 
operate and adapt to changes in the environment. This 
evolution so parallels the development of life on Earth 
that living systems are likely to provide realistic models 
for sensor network design. 

4 An ecological model 
 
We think of motes as organisms within a community. At 

birth (i.e., at deployment time) the motes are endowed 
with genetic material, containing, among others, an initial 
state and rules by which they interact with the 
environment. The state and the rules may change as the 
motes interact with the environment, reflecting their 
dynamic adaptation to conditions in their neighborhood. 
Additionally, the motes may remember and record their 
interaction with the environment by storing information in 
their limited on-board memory. Memory and its use to 
change state or rules are considered learning. Changing 
state conditions based on learning demonstrates some 
level of cognition.  

One of the goals of this work is to investigate how local 
decisions based on strictly local information can effect  
global results. Limiting decisions to localities is important 
for reasons of scalability and autonomy. Local decisions 
allow distributed control. In turn, distributed control 
through local decisions provides a natural redundancy 
affording fault tolerance – as some motes exhaust their 
energy budget and expire others will continue to make 
decisions. 

Although genetic algorithms are a popular algorithmic 
paradigm, they rely in a crucial way on extremely fast 
computational speed to evaluate many random mutations 
of some genetic specification. While most of these new 
combinations will prove useless, or worse, harmful to the 
objective, the search is for the small percentage of 
mutations that prove beneficial. Indeed, the limited 
computational power of the motes would make the use of 
genetic algorithms prohibitively expensive. Furthermore, 
we view a mote as an individual organism. Just as with 
living organisms, successful changes in behavior or other 
capabilities must be based on experience and learning. 
Random changes would be highly likely to result in death 
(i.e., failure) of the mote and catastrophe for the network. 
Afterwards, there would be no chance to try another 
mutation. 

We use cellular automata as a viable model for 
massively deployed sensor networks operating as 
organisms in an ecosystem. A cellular automaton 
represents, in most ways, a distribution of sensor motes 

throughout a geographic region. As illustrated in Figure 1, 
eight neighbor cells surround each internal cell. Border 
cells have three or five neighbors. Neighbor cells 
represent those motes that can receive a transmission from 
a cell. Thus, the regularity of the grid represents a logical 
indication of physical proximity.  Throughout this work 
we assume that each sensor has exactly eight neighbors. 
Visibly, the set of neighbors need not be limited to the 
eight adjacent cells. Specifying a neighbor radius greater 
than 1 increases the number of cells that can receive from 
the transmitting cell. A radius of two would include in 
addition to the eight adjacent cells, the 16 cells adjacent to 
these neighbors. One apparent limitation of this model is 
that the number of neighbors is fixed for a given radius; 
however, disabling some of the neighbors can change this. 

 
 
 
 
 
 
 
 
 

Figure 1: Illustrating the neighborhood of a cell 
 

5 Aggregating sensed data 
 
There are, essentially, two ways in which data sensed by 

the motes can be aggregated. In a centrally-controlled 
network, data aggregation and integration is a two-stage 
process: in the first stage the motes forward the data 
collected to the sink. Some of the data may be fused en 
route but the final responsibility for aggregation rests 
within the sink. In the second stage, the aggregated result 
is broadcast back to the network. Though straightforward, 
this method does not scale well [17,18]. By contrast, in a 
truly distributed system, as is the case in an autonomous 
sensor network, the aggregation must be performed in-situ 
by the sensors themselves. To illustrate, suppose a 
distributed system has capabilities to both sample the 
temperature of its immediate environment and to set that 
temperature. The goal is for each mote to eventually 
obtain and maintain the global average by using local data 
only. As the values change, the process must be repeated. 
While a number of solutions to the aggregation problem 
have been proposed in the literature [17,18,19,20,21,22], 
they were either designed for sensor networks of small 
size or have a centralized flavor. One of the key 
contributions of this work is to show that fully distributed 
data aggregation can be performed in massively deployed 
sensor networks. 

In the following, we first examine the issues of using a 
centralized approach for data aggregation in average 
calculation, and then propose our autonomous and 
distributed approach. As our cellular automaton is defined 
such that each cell can only transmit to its immediate 
neighbor, then in the centralized approach, data collected 
by the sink from each cell must pass through half the span 
of the grid on average. It is possible to minimize the 
number of transactions by aggregating values as they are 
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routed to the sink, but this requires substantial 
infrastructure and coordination. In the second stage 
(broadcasting aggregated result), to conserve mote energy, 
a suggested approach is for the sink to broadcast a return 
message to all motes. But this method does not scale well 
as the power of the sink’s transmission would have to 
grow with the size of the sensor network distribution and 
the transmission from the sink must be directly receivable 
by all motes (i.e., there can be no blockage). We assume a 
cost of flooding the computed average to all cells, which 
increases with the size of the grid. Besides transmission 
costs, there are additional problems with the centralized 
approach. Routing tables to reach the sink must be 
discovered and maintained. Disruption in these routes 
must be handled to assure messages arrive at the sink. 
Regardless of how this is done, this method is open to 
single points of failure. 

Recently, it was noticed by Wadaa et al. [23] as well as 
by other workers that centrally-controlled sensor networks 
are prone to uneven energy depletion leading to the 
creation of energy holes in the vicinity of sinks. 
Specifically, [23] showed that by the time the motes close 
to the sink have expended all their energy, other motes in 
the sensor network still have about 80-90% of their 
original energy budget. This uneven energy depletion 
creates an energy hole around the sink, severely curtailing 
network longevity. Figure 2 illustrates the uneven energy 
depletion problem, where all black cells must pass 
messages to the sink through a single cell in the top row. 
In our cellular automaton model, the cells closest to the 
sink must relay messages from every cell in the grid and 
their energy budget will decrease rapidly relative to cells 
further away. 

 
 
 
 
 
 
 
 
 

Figure 2: Illustrating the energy-hole problem 
 
Our objective is for the sensor network to function as a 

community that will come to a consensus on some value 
across the network without any mote or any central 
authority having global knowledge of all mote values. The 
problem is for each mote to obtain and maintain the global 
value by iteratively using only data that is available 
locally. 

We now give an informal description of our model. 
Assume a data value on which consensus is to be formed 
is known by each mote and obtained by some interaction 
with the environment. Upon deployment, each mote is 
assigned a time period and a selection time for action 
within that time period as genetic material. The time 
period is divided into one or more slots. The selection 
time assigned to a mote is one of these slots within the 
time period (e.g., one mote may be selected at slot 3, 
another at slot 18, but all motes will be selected at some 
time during a time period). Because the selection time for 

each mote is determined randomly, there is no guarantee 
that two or more motes will never be selected at the same 
time. Upon deployment, each mote starts its own clock. If 
two motes are at a neighbor radius greater than 3, they 
may execute the algorithm simultaneously (i.e., be 
selected), as the results of their calculations are 
independent of each other. If the radius is less than 3, the 
result of calculations is order-dependent. In this case, 
simultaneous transmissions will cause collisions, thus a 
Media Access Control (MAC) layer protocol is assumed 
to decide cellular execution order. To simulate this 
control, all motes (i.e. cells) selected at the same time slot 
are executed in random order. The order is randomized 
anew when they are selected next time. Thus, the selection 
time is fixed at deployment (being part of the genetic 
material), but the execution order in each time slot is a 
“function of the environment” and may change. Even with 
MAC layer negotiations, by this method each cell is acting 
asynchronously and autonomously. Because the time and 
cost of reaching a global decision is a function of the 
consensus value, selection time assignment, and execution 
order in each time slot, we run multiple executions 
varying all three parameters and average the results. 

When a cell reaches its selection time within the time 
period, it executes the algorithm as follows. If its status is 
inactive, it does nothing. Otherwise, if its status is active, 
it begins a series of transactions. A transaction is either a 
request for information from a neighbor or a specification 
given to a neighbor. Transactions are significant because 
they require radio transmissions, typically the most costly 
activity of a mote. If a mote determines no action is 
required, it sets its status to inactive and will not 
participate again until it is reactivated by one of its 
neighbors. If a mote determines action is required, it will 
perform the necessary work resulting in some change to 
itself and/or its neighbors. During this process, if any 
neighbor is inactive, it may be reactivated as determined 
by the selected mote. The simulation continues until all 
cells are set to inactive. Thus, the simulation ends using 
only local information; no global control is required. As 
these local neighbor cells act autonomously and 
asynchronously yet cooperate with each other, act only on 
local environmental information, and remember 
information from one action that will affect a future 
action, we argue that this system demonstrates simple 
cognition. 

6 Computing the global average 
 
In the following, we use our CA to simulate the function 

of averaging a value across the network. Figure 3 depicts 
an initial distribution in a cellular automaton with a 30 x 
30 grid of cells showing a random distribution of values 
(for example, assume a color) in the range of [0,255]. The 
objective is to calculate an average color and set all motes 
to that value using only local information to determine 
local actions. The basic operation occurs when a cell is 
selected for action. When each cell is selected, it begins a 
series of transactions: 
• It requests (requires transmissions) the color value of 

each of its neighbors. 
• If all are equal, it inactivates itself. 

Sink 



• If not, it calculates an average for the neighborhood 
and sets itself and all neighbors (requires 
transmissions) to that value. 

As transmissions are the most expensive operations of a 
mote and the number of transmissions required when a 
cell is selected are fixed, a cell selection is a measure of 
workload: the more times a cell is selected, the higher its 
workload and the more energy it expends. Parameters for 
the simulation are set such that all cells will be selected 
once during each time period. Figure 4 illustrates the 
color change after 10 periods. Soon thereafter, the color 
differences are indistinguishable to the naked eye. 
 

 

 

 

 

 

Figure 3: Initial 
distribution of colors for 

color averaging 

Figure 4:  Distribution of 
colors after 10 time periods 

The converged average for the community, the average 
after all cells are inactivated, is always equal to the 
average of the original distribution calculated prior to 
starting the algorithm.  An interesting and valuable 
attribute of this algorithm is that the average color 
following each cell selection is also equal to the initial 
calculated average. Re-examining the process reveals the 
reasons for this state of affairs. A group of nine cells of 
different colors contributes to the average of the total grid. 
When these cells are averaged and set to the same average 
value for the group, they contribute exactly the same to 
the average of the entire grid as they did with differing 
values. 

A great advantage of our decentralized approach is in 
the distribution of energy expenditure. The “funnel effect” 
of multi-hop routing required for the centralized approach 
described above will deplete the energy of cells much 
faster when their distance to the sink is shorter. In our 
decentralized approach, the cell selections required is not 
only evenly distributed, but the cell selections required of 
an individual mote actually decreases as the grid size 
increases, as shown in Figure 5. Figure 5 shows that the 
number of selections per cell increases steadily until the 
grid size exceeds 400X400 cells but, thereafter, is stable. 
Thus, for large networks, the cell selections per mote does 
not increase. 

As stated earlier, some applications require a close 
agreement of common value, while others may tolerate a 
much larger divergence. We call the latter case “good 
enough computing” and show that, in such cases, a 
distributed consensus on a small range of values can occur 
quickly with relatively few transactions. As an example, a 
200 x 200 grid begins with a color distribution depicted in 
Figure 6. All 256 colors are represented in a fairly even 
distribution with a standard deviation of 73.74, 49.6% of 
colors above the average plus a tolerance of 0.5, and 
49.95% of colors below the average minus this tolerance. 

 

 
 
 
 
 
 
 
 

Figure 5: Illustrating the minimum, average, and 
maximum number of cell selections 

 
 

 

 

 

 

 

Figure 6: Initial distributions of colors 
 

However, as shown by the visual display of the 
simulation in Figures 3 and 4, the algorithm comes close 
to the solution very quickly. The simulation takes 271 
time steps to come to a solution where all cells are within 
the specified tolerance. By the 86th time step, there are 
only 3 colors represented. The standard deviation is 
within the tolerance of 0.5. No color is more than 0.56 
above the average plus the tolerance and no color is more 
than 0.42 below the average minus the tolerance. Thus the 
range of colors is substantially reduced long before all 
colors are within the specified tolerance. 

As the grid size grows, the total number of transactions 
increases with a linear slope as shown by the line with the 
steepest slope in Figure 7. This is not a problem for 
scalability as the total energy available also grows linearly 
with more motes and recall that Figure 5 shows that the 
number of transactions per mote does not grow with large 
grid sizes. But the other lines in Figure 7 show that 
solutions with a large percentage of cells within the 
tolerance are achieved with far fewer transactions. Note 
that slopes for these solutions asymptotically slope 
towards zero as the grid size increases, a desirable 
property for scalability. Solutions up to 95% within the 
tolerated average reach that asymptote with relatively few 
transactions compared with the 100% solution regardless 
of grid size. 
 

 

 

 

 

Figure 7: Percentage of cells within tolerance 
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7 Concluding remarks 
 
The full potential of sensor networks can only reached 

when there are massive numbers of heterogeneous motes 
acting asynchronously and autonomously, yet cooperating 
in a way that their local actions, based on local 
information, combine to form a functional and sustainable 
network interacting with the environment. This is how 
living systems have evolved so successfully. Individual 
organisms operate, make decisions, and take actions based 
on a combination of innate rules (i.e. genetics) and learned 
behavior in a local niche. The combination of the actions 
of the individual organisms results in a multifunctional, 
sustainable ecosystem. 

In this work we have demonstrated a function 
completed by a sensor network working as a community: 
autonomous motes functioning asynchronously cooperate 
to achieve a common goal. The function is carried out 
without centralized control and without any mote needing 
to know all information known within the community. We 
have also shown that the goal can be closely approached 
with few costs in time and resources compared with the 
much more costly final answer 

The ever-increasing technology curve is going to 
continue to escalate the capabilities available for situation 
management. These tools cannot be timely managed and 
analyzed under centralized control. Methods such as we 
have described here will be necessary for the large 
systems to operate as a community where many functions 
can be facilitated by autonomous, asynchronous sub 
systems. 

The IVHM program at NASA exemplifies the 
complexity encountered when designing the management 
of many diverse situations in an environment where timely 
decisions must be made correctly to avert catastrophe. In 
such an environment, situation management through a 
centralized controller is impractical. Our communal 
approach, where decisions are made locally when possible 
or through cooperation among subsystems when 
necessary, provides the architecture required of such 
complex systems.    
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