5 research outputs found

    Deep Learning for Crowd Anomaly Detection

    Get PDF
    Today, public areas across the globe are monitored by an increasing amount of surveillance cameras. This widespread usage has presented an ever-growing volume of data that cannot realistically be examined in real-time. Therefore, efforts to understand crowd dynamics have brought light to automatic systems for the detection of anomalies in crowds. This thesis explores the methods used across literature for this purpose, with a focus on those fusing dense optical flow in a feature extraction stage to the crowd anomaly detection problem. To this extent, five different deep learning architectures are trained using optical flow maps estimated by three deep learning-based techniques. More specifically, a 2D convolutional network, a 3D convolutional network, and LSTM-based convolutional recurrent network, a pre-trained variant of the latter, and a ConvLSTM-based autoencoder is trained using both regular frames and optical flow maps estimated by LiteFlowNet3, RAFT, and GMA on the UCSD Pedestrian 1 dataset. The experimental results have shown that while prone to overfitting, the use of optical flow maps may improve the performance of supervised spatio-temporal architectures

    Human Activity Recognition (HAR) Using Wearable Sensors and Machine Learning

    Get PDF
    Humans engage in a wide range of simple and complex activities. Human Activity Recognition (HAR) is typically a classification problem in computer vision and pattern recognition, to recognize various human activities. Recent technological advancements, the miniaturization of electronic devices, and the deployment of cheaper and faster data networks have propelled environments augmented with contextual and real-time information, such as smart homes and smart cities. These context-aware environments, alongside smart wearable sensors, have opened the door to numerous opportunities for adding value and personalized services to citizens. Vision-based and sensory-based HAR find diverse applications in healthcare, surveillance, sports, event analysis, Human-Computer Interaction (HCI), rehabilitation engineering, occupational science, among others, resulting in significantly improved human safety and quality of life. Despite being an active research area for decades, HAR still faces challenges in terms of gesture complexity, computational cost on small devices, and energy consumption, as well as data annotation limitations. In this research, we investigate methods to sufficiently characterize and recognize complex human activities, with the aim to improving recognition accuracy, reducing computational cost and energy consumption, and creating a research-grade sensor data repository to advance research and collaboration. This research examines the feasibility of detecting natural human gestures in common daily activities. Specifically, we utilize smartwatch accelerometer sensor data and structured local context attributes and apply AI algorithms to determine the complex gesture activities of medication-taking, smoking, and eating. This dissertation is centered around modeling human activity and the application of machine learning techniques to implement automated detection of specific activities using accelerometer data from smartwatches. Our work stands out as the first in modeling human activity based on wearable sensors with a linguistic representation of grammar and syntax to derive clear semantics of complex activities whose alphabet comprises atomic activities. We apply machine learning to learn and predict complex human activities. We demonstrate the use of one of our unified models to recognize two activities using smartwatch: medication-taking and smoking. Another major part of this dissertation addresses the problem of HAR activity misalignment through edge-based computing at data origination points, leading to improved rapid data annotation, albeit with assumptions of subject fidelity in demarcating gesture start and end sections. Lastly, the dissertation describes a theoretical framework for the implementation of a library of shareable human activities. The results of this work can be applied in the implementation of a rich portal of usable human activity models, easily installable in handheld mobile devices such as phones or smart wearables to assist human agents in discerning daily living activities. This is akin to a social media of human gestures or capability models. The goal of such a framework is to domesticate the power of HAR into the hands of everyday users, as well as democratize the service to the public by enabling persons of special skills to share their skills or abilities through downloadable usable trained models

    Energy Level-Based Abnormal Crowd Behavior Detection

    No full text
    The change of crowd energy is a fundamental measurement for describing a crowd behavior. In this paper, we present a crowd abnormal detection method based on the change of energy-level distribution. The method can not only reduce the camera perspective effect, but also detect crowd abnormal behavior in time. Pixels in the image are treated as particles, and the optical flow method is adopted to extract the velocities of particles. The qualities of different particles are distributed as different value according to the distance between the particle and the camera to reduce the camera perspective effect. Then a crowd motion segmentation method based on flow field texture representation is utilized to extract the motion foreground, and a linear interpolation calculation is applied to pedestrian’s foreground area to determine their distance to the camera. This contributes to the calculation of the particle qualities in different locations. Finally, the crowd behavior is analyzed according to the change of the consistency, entropy and contrast of the three descriptors for co-occurrence matrix. By calculating a threshold, the timestamp when the crowd abnormal happens is determined. In this paper, multiple sets of videos from three different scenes in UMN dataset are employed in the experiment. The results show that the proposed method is effective in characterizing anomalies in videos

    Energy Level-Based Abnormal Crowd Behavior Detection

    No full text
    The change of crowd energy is a fundamental measurement for describing a crowd behavior. In this paper, we present a crowd abnormal detection method based on the change of energy-level distribution. The method can not only reduce the camera perspective effect, but also detect crowd abnormal behavior in time. Pixels in the image are treated as particles, and the optical flow method is adopted to extract the velocities of particles. The qualities of different particles are distributed as different value according to the distance between the particle and the camera to reduce the camera perspective effect. Then a crowd motion segmentation method based on flow field texture representation is utilized to extract the motion foreground, and a linear interpolation calculation is applied to pedestrian’s foreground area to determine their distance to the camera. This contributes to the calculation of the particle qualities in different locations. Finally, the crowd behavior is analyzed according to the change of the consistency, entropy and contrast of the three descriptors for co-occurrence matrix. By calculating a threshold, the timestamp when the crowd abnormal happens is determined. In this paper, multiple sets of videos from three different scenes in UMN dataset are employed in the experiment. The results show that the proposed method is effective in characterizing anomalies in videos
    corecore