26,936 research outputs found

    Group Rekeying Schemes for Secure Group Communication in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are promising solutions for many applications. However, wireless sensor nodes suffer from many constraints such as low computation capability, small memory, limited energy resources, and so on. Grouping is an important technique to localize computation and reduce communication overhead in wireless sensor networks. In this paper, we use grouping to refer to the process of combining a set of sensor nodes with similar properties. We propose two centralized group rekeying (CGK) schemes for secure group communication in sensor networks. The lifetime of a group is divided into three phases, i.e., group formation, group maintenance, and group dissolution. We demonstrate how to set up the group and establish the group key in each phase. Our analysis shows that the proposed two schemes are computationally efficient and secure

    Group Rekeying Schemes for Secure Group Communication in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are promising solutions for many applications. However, wireless sensor nodes suffer from many constraints such as low computation capability, small memory, limited energy resources, and so on. Grouping is an important technique to localize computation and reduce communication overhead in wireless sensor networks. In this paper, we use grouping to refer to the process of combining a set of sensor nodes with similar properties. We propose two centralized group rekeying (CGK) schemes for secure group communication in sensor networks. The lifetime of a group is divided into three phases, i.e., group formation, group maintenance, and group dissolution. We demonstrate how to set up the group and establish the group key in each phase. Our analysis shows that the proposed two schemes are computationally efficient and secure

    Secured Clustering in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are being increasingly used in a wide variety of applications such as the environment, nuclear power plants, military and transportation, to name a few. These sensors are fragile devices, with minimal energy, storage and computational resources. The phenomenon that is sensed is relayed to a powerful base station for further analysis. A key issue in the design of communication protocols for wireless sensor networks is energy conservation. Another important criterion for sensor networks is security. This is particularly important in military applications and national infrastructure such as power plants and transportation systems. As far as we are aware, no protocols have been proposed for energy efficient secure communications. In previous work both security and energy efficiency have been considered separately in the design of protocols for sensor networks. In this thesis we propose a secure energy efficient communication protocol for wireless sensor networks. A clustered protocol based on "A key-management scheme for distributed sensor networks" proposed by V.D. Gligor is developed and simulated in this thesis. To further improve energy efficiency we apply the concept of a force to improve the coverage of the sensor nodes. The properties of our proposed algorithm have been analyzed. We propose in this thesis a secure scheme with clustering, a balanced secure scheme with clustering and finally a balanced clustered secure scheme after the application of force. Results show that the proposed balanced clustered secure scheme after the application of force provides the best energy efficiency as well as security. The secure scheme with no clustering gave the worst results.Computer Science Departmen

    Energy-efficient routing and secure communication in wireless sensor networks

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Wireless Sensor Networks (WSNs) consist of miniature sensor nodes deployed to gather vital information about an area of interest. The ability of these networks to monitor remote and hostile locations has attracted a significant amount of research over the past decade. As a result of this research, WSNs have found their presence in a variety of applications such as industrial automation, habitat monitoring, healthcare, military surveillance and transportation. These networks have the ability to operate in human-inaccessible terrains and collect data on an unprecedented scale. However, they experience various technical challenges at the time of deployment as well as operation. Most of these challenges emerge from the resource limitations such as battery power, storage, computation, and transmission range, imposed on the sensor nodes. Energy conservation is one of the key issues requiring proper consideration. The need for energy-efficient routing protocols to prolong the lifetime of these networks is very much required. Moreover, the operation of sensor nodes in an intimidating environment and the presence of error-prone communication links expose these networks to various security breaches. As a result, any designed routing protocol need to be robust and secure against one or more malicious attacks. This thesis aims to provide an effective solution for minimizing the energy consumption of the nodes. The energy utilization is reduced by using efficient techniques for cluster head selection. To achieve this objective, two different cluster-based hierarchical routing protocols are proposed. The selection of an optimal percentage of cluster heads reduces the energy consumption, enhances the quality of delivered data and prolongs the lifetime of a network. Apart from an optimal cluster head selection, energy consumption can also be reduced using efficient congestion detection and mitigation schemes. We propose an application-specific priority-based congestion control protocol for this purpose. The proposed protocol integrates mobility and heterogeneity of the nodes to detect congestion. Our proposed protocol uses a novel queue scheduling mechanism to achieve coverage fidelity, which ensures that the extra resources consumed by distant nodes are utilized effectively. Apart from energy conservation issue, this thesis also aims to provide a robust solution for Sybil attack detection in WSN. In Sybil attack, one or more malicious nodes forge multiple identities at a given time to exhaust network resources. These nodes are detected prior to cluster formation to prevent their forged identities from participating in cluster head selection. Only legitimate nodes are elected as cluster heads to enhance utilization of the resources. The proposed scheme requires collaboration of any two high energy nodes to analyse received signal strengths of neighbouring nodes. Moreover, the proposed scheme is applied to a forest wildfire monitoring application. It is crucial to detect Sybil attack in a wildfire monitoring application because these forged identities have the ability to transmit high false-negative alerts to an end user. The objective of these alerts is to divert the attention of an end user from those geographical regions which are highly vulnerable to a wildfire. Finally, we provide a lightweight and robust mutual authentication scheme for the real-world objects of an Internet of Thing. The presence of miniature sensor nodes at the core of each object literally means that lightweight, energy-efficient and highly secured schemes need to be designed for such objects. It is a payload-based encryption approach which uses a simple four way handshaking to verify the identities of the participating objects. Our scheme is computationally efficient, incurs less connection overhead and safeguard against various types of replay attacks

    A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring

    Full text link
    [EN] Sensor networks can be used in many sorts of environments. The increase of pollution and carbon footprint are nowadays an important environmental problem. The use of sensors and sensor networks can help to make an early detection in order to mitigate their effect over the medium. The deployment of wireless sensor networks (WSNs) requires high-energy efficiency and secures mechanisms to ensure the data veracity. Moreover, when WSNs are deployed in harsh environments, it is very difficult to recharge or replace the sensor's batteries. For this reason, the increase of network lifetime is highly desired. WSNs also work in unattended environments, which is vulnerable to different sort of attacks. Therefore, both energy efficiency and security must be considered in the development of routing protocols for WSNs. In this paper, we present a novel Secure and Low-energy Zone-based Routing Protocol (SeLeZoR) where the nodes of the WSN are split into zones and each zone is separated into clusters. Each cluster is controlled by a cluster head. Firstly, the information is securely sent to the zone-head using a secret key; then, the zone-head sends the data to the base station using the secure and energy efficient mechanism. This paper demonstrates that SeLeZoR achieves better energy efficiency and security levels than existing routing protocols for WSNs.Mehmood, A.; Lloret, J.; Sendra, S. (2016). A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring. Wireless Communications and Mobile Computing. 16(17):2869-2883. https://doi.org/10.1002/wcm.2734S286928831617Sendra S Deployment of efficient wireless sensor nodes for monitoring in rural, indoor and underwater environments 2013Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced Developed Distributed Energy-efficient Clustering for Heterogeneous Wireless Sensor Networks. Procedia Computer Science, 19, 914-919. doi:10.1016/j.procs.2013.06.125Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., Lloret, J., Sendra, S., & Rodrigues, J. J. P. C. (2011). Taking Cooperative Decisions in Group-Based Wireless Sensor Networks. Cooperative Design, Visualization, and Engineering, 61-65. doi:10.1007/978-3-642-23734-8_9Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Jain T Wireless environmental monitoring system (wems) using data aggregation in a bidirectional hybrid protocol In Proc of the 6th International Conference ICISTM 2012 2012Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35(4), 1317-1328. doi:10.1016/j.jnca.2012.01.016Heinzelman WR Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks In proc of the 33rd Annual Hawaii International Conference on System Sciences 2000 2000Xiangning F Yulin S Improvement on LEACH protocol of wireless sensor network In proc of the 2007 International Conference on Sensor Technologies and Applications SensorComm 2007 2007Tong M Tang M LEACH-B: an improved LEACH protocol for wireless sensor network In proc of the 6th International Conference on Wireless Communications Networking and Mobile Computing WiCOM 2010 2010Mohammad El-Basioni, B. M., Abd El-kader, S. M., Eissa, H. S., & Zahra, M. M. (2011). An Optimized Energy-aware Routing Protocol for Wireless Sensor Network. Egyptian Informatics Journal, 12(2), 61-72. doi:10.1016/j.eij.2011.03.001Younis O Fahmy S Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach In proc of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2004 2004Noack, A., & Spitz, S. (2009). Dynamic Threshold Cryptosystem without Group Manager. Network Protocols and Algorithms, 1(1). doi:10.5296/npa.v1i1.161Nasser, N., & Chen, Y. (2007). SEEM: Secure and energy-efficient multipath routing protocol for wireless sensor networks. Computer Communications, 30(11-12), 2401-2412. doi:10.1016/j.comcom.2007.04.014Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11(1), 45-55. doi:10.1109/jsen.2010.2051539Parra L Sendra S Jimenez JM Lloret J Smart system to detect and track pollution in marine environments, in proc. of the 2015 2015 1503 1508Atto, M., & Guy, C. (2014). Routing Protocols and Quality of Services for Security Based Applications Using Wireless Video Sensor Networks. Network Protocols and Algorithms, 6(3), 119. doi:10.5296/npa.v6i3.5802Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780-790. doi:10.1016/j.future.2011.04.019Bri D Sendra S Coll H Lloret J How the atmospheric variables affect to the WLAN datalink layer parameters 2010Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422-429. doi:10.1109/jcn.2013.000073Amjad M 2014 Energy efficient multi level and distance clustering mechanism for wireless sensor networksMeghanathan, N. (2015). A Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data Gathering Trees for Wireless Sensor Networks. Network Protocols and Algorithms, 7(3), 18. doi:10.5296/npa.v7i3.796

    QoS Provision for Wireless Sensor Networks

    Get PDF
    Wireless sensor network is a fast growing area of research, receiving attention not only within the computer science and electrical engineering communities, but also in relation to network optimization, scheduling, risk and reliability analysis within industrial and system engineering. The availability of micro-sensors and low-power wireless communications will enable the deployment of densely distributed sensor/actuator networks. And an integration of such system plays critical roles in many facets of human life ranging from intelligent assistants in hospitals to manufacturing process, to rescue agents in large scale disaster response, to sensor networks tracking environment phenomena, and others. The sensor nodes will perform significant signal processing, computation, and network self-configuration to achieve scalable, secure, robust and long-lived networks. More specifically, sensor nodes will do local processing to reduce energy costs, and key exchanges to ensure robust communications. These requirements pose interesting challenges for networking research. The most important technical challenge arises from the development of an integrated system which is 1)energy efficient because the system must be long-lived and operate without manual intervention, 2)reliable for data communication and robust to attackers because information security and system robustness are important in sensitive applications, such as military. Based on the above challenges, this dissertation provides Quality of Service (QoS) implementation and evaluation for the wireless sensor networks. It includes the following 3 modules, 1) energy-efficient routing, 2) energy-efficient coverage, 3). communication security. Energy-efficient routing combines the features of minimum energy consumption routing protocols with minimum computational cost routing protocols. Energy-efficient coverage provides on-demand sensing and measurement. Information security needs a security key exchange scheme to ensure reliable and robust communication links. QoS evaluation metrics and results are presented based on the above requirements

    Group-Based Key Management Protocol for Energy Efficiency in Long-Lived and Large-Scale Distributed Sensor Networks

    Get PDF
    As wireless sensor networks grow, so does the need for effective security mechanisms. We propose a cryptographic key-management protocol, called energy-efficient key-management (EEKM) protocol. Using a location-based group key scheme, the protocol supports the revocation of compromised nodes and energy-efficient rekeying. The design is motivated by the observation that unicast-based rekeying does not meet the security requirements of periodic rekeying in long-lived wireless sensor networks. EEKM supports broadcast-based rekeying for low-energy key management and high resilience. In addition, to match the increasing complexity of encryption keys, the protocol uses a dynamic composition key scheme. EEKM also provides group-management protocols for secure group communication. We analyzed the energy efficiency and security of EEKM and compared it to other key-management protocols using a network simulator

    Group Rekeying Schemes for Secure Group Communication in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are promising solutions for many applications. However, wireless sensor nodes suffer from many constraints such as low computation capability, small memory, limited energy resources, and so on. Grouping is an important technique to localize computation and reduce communication overhead in wireless sensor networks. In this paper, we use grouping to refer to the process of combining a set of sensor nodes with similar properties. We propose two centralized group rekeying (CGK) schemes for secure group communication in sensor networks. The lifetime of a group is divided into three phases, i.e., group formation, group maintenance, and group dissolution. We demonstrate how to set up the group and establish the group key in each phase. Our analysis shows that the proposed two schemes are computationally efficient and secure

    A Survey of Energy Efficient Security Architectures and Protocols for Wireless Sensor Networks, Journal of Telecommunications and Information Technology, 2012, nr 3

    Get PDF
    Data security and energy aware communication are key aspects in design of modern ad hoc networks. In this paper we investigate issues associated with the development of secure IEEE 802.15.4 based wireless sensor networks (WSNs) – a special type of ad hoc networks. We focus on energy aware security architectures and protocols for use in WSNs. To give the motivation behind energy efficient secure networks, first, the security requirements of wireless sensor networks are presented and the relationships between network security and network lifetime limited by often insufficient resources of network nodes are explained. Second, a short literature survey of energy aware security solutions for use in WSNs is presented
    corecore