1,139 research outputs found

    Energy Efficient Resource Allocation for Mobile-Edge Computation Networks with NOMA

    Get PDF
    This paper investigates an uplink non-orthogonal multiple access (NOMA)-based mobile-edge computing (MEC) network. Our objective is to minimize the total energy consumption of all users including transmission energy and local computation energy subject to computation latency and cloud computation capacity constraints. We first prove that the total energy minimization problem is a convex problem, and it is optimal to transmit with maximal time. Then, we accordingly proposed an iterative algorithm with low complexity, where closed-form solutions are obtained in each step. The proposed algorithm is successfully shown to be globally optimal. Numerical results show that the proposed algorithm achieves better performance than the conventional methods.Comment: 7 pages 5 figures. arXiv admin note: text overlap with arXiv:1807.1184

    Energy Efficient Secure Computation Offloading in NOMA-based mMTC Networks for IoT

    Get PDF
    In the era of Internet of Everything, massive connectivity and various demands of latency for Internet of Thing (IoT) devices will be supported by the massive Machine Type Communication (mMTC). Non-Orthogonal Multiple Access (NOMA) and Mobile Edge Computing (MEC) have the advantages of improving network capacity, reducing MTC devices’ (MTCDs) latency and enhancing Quality of Service. Exploiting these benefits, we focus on the energy efficient secure computation offloading in NOMA based mMTC networks for IoT, where the relay equipped with an MEC server and a passive malicious eavesdropper are presented. We optimize the joint computation and communication resource allocation to maximize the secrecy energy efficiency of computation offloading while guaranteeing the delay requirements of MTCDs. Furthermore, we model the subchannels allocation problem as MTCD-to-Subchannel matching. Exploiting difference of convex programming and successive convex approximation, we formulate the Dinkelbach-based SEE optimization algorithm and obtain the closed-form expression of power allocation for MTCDs’ on each subchannel. Based on the communication resources allocation schemes, we propose the Knapsack algorithm to solve the problem of computation resource allocation. Furthermore, we formulate the joint computation and communication resource allocation algorithm for secure computation offloading. Simulation results demonstrate the effectiveness of proposed algorithm for supporting IoT devices energy efficient secure computation offloading

    A Deep Learning-Based Approach to Resource Allocation in UAV-aided Wireless Powered MEC Networks

    Get PDF
    Beamforming and non-orthogonal multiple access (NOMA) are two key techniques for achieving spectral efficient communication in the fifth generation and beyond wireless networks. In this paper, we jointly apply a hybrid beamforming and NOMA techniques to an unmanned aerial vehicle (UAV)-carried wireless-powered mobile edge computing (MEC) system, within which the UAV is mounted with a wireless power charger and the MEC platform delivers energy and computing services to Internet of Things (IoT) devices. We aim to maximize the sum computation rate at all IoT devices whilst satisfying the constraint of energy harvesting and coverage. The considered optimization problem is non-convex involving joint optimization of the UAV’s 3D placement and hybrid beamforming matrices as well as computation resource allocation in partial offloading pattern, and thus is quite difficult to tackle directly. By applying the polyhedral annexation method and the deep deterministic policy gradient (DDPG) algorithm, we propose an effective algorithm to derive the closed-form solution for the optimal 3D deployment of the UAV, and find the solution for the hybrid beamformer. A resource allocation algorithm for partial offloading pattern is thereby proposed. Simulation results demonstrate that our designed algorithm yields a significant computation performance enhancement as compared to the benchmark schemes

    Cooperative Multi-Bitrate Video Caching and Transcoding in Multicarrier NOMA-Assisted Heterogeneous Virtualized MEC Networks

    Get PDF
    Cooperative video caching and transcoding in mobile edge computing (MEC) networks is a new paradigm for future wireless networks, e.g., 5G and 5G beyond, to reduce scarce and expensive backhaul resource usage by prefetching video files within radio access networks (RANs). Integration of this technique with other advent technologies, such as wireless network virtualization and multicarrier non-orthogonal multiple access (MC-NOMA), provides more flexible video delivery opportunities, which leads to enhancements both for the network's revenue and for the end-users' service experience. In this regard, we propose a two-phase RAF for a parallel cooperative joint multi-bitrate video caching and transcoding in heterogeneous virtualized MEC networks. In the cache placement phase, we propose novel proactive delivery-aware cache placement strategies (DACPSs) by jointly allocating physical and radio resources based on network stochastic information to exploit flexible delivery opportunities. Then, for the delivery phase, we propose a delivery policy based on the user requests and network channel conditions. The optimization problems corresponding to both phases aim to maximize the total revenue of network slices, i.e., virtual networks. Both problems are non-convex and suffer from high-computational complexities. For each phase, we show how the problem can be solved efficiently. We also propose a low-complexity RAF in which the complexity of the delivery algorithm is significantly reduced. A Delivery-aware cache refreshment strategy (DACRS) in the delivery phase is also proposed to tackle the dynamically changes of network stochastic information. Extensive numerical assessments demonstrate a performance improvement of up to 30% for our proposed DACPSs and DACRS over traditional approaches.Comment: 53 pages, 24 figure

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin
    • …
    corecore