477 research outputs found

    Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis

    Get PDF
    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.https://doi.org/10.3390/s15092220

    Releasing network isolation problem in group-based industrial wireless sensor networks

    Get PDF
    In this paper, we propose a cross-layer optimization scheme named Adjusting the Transmission Radius (ATR), which is based on the Energy Consumed uniformly Connected K-Neighborhood (EC-CKN) sleep scheduling algorithm in wireless sensor networks (WSNs). In particular, we discovered two important problems, namely, the death acceleration problem and the network isolation problem, in EC-CKN-based WSNs. Furthermore, we solve these two problems in ATR, which creates sleeping opportunities for the nodes that cannot get a chance to sleep in the EC-CKN algorithm. Simulation and experimental results show that the network lifetime of ATR-Connected-K-Neighborhood-based WSNs increases by 19%, on average, and the maximum increment is 41%. In addition, four important insights were discovered through this research work and presented in this paper

    An Energy Efficient Routing Protocol for Wireless Sensor Networks using A-star Algorithm

    Get PDF
    AbstractSensors are regarded as significant components of electronic devices. In most applications of wireless sensor networks (WSNs), important and critical information must be delivered to the sink in a multi-hop and energy-efficient manner. Inasmuch as the energy of sensor nodes is limited, prolonging network lifetime in WSNs is considered to be a critical issue. In order to extend the network lifetime, researchers should consider energy consumption in routing protocols of WSNs. In this paper, a new energy-efficient routing protocol (EERP) has been proposed for WSNs using A-star algorithm. The proposed routing scheme improves the network lifetime by forwarding data packets via the optimal shortest path. The optimal path can be discovered with regard to the maximum residual energy of the next hop sensor node, high link quality, buffer occupancy and minimum hop counts. Simulation results indicate that the proposed scheme improves network lifetime in comparison with A-star and fuzzy logic(A&F) protocol

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Energy Efficient Scheme for Wireless Sensor Networks

    Get PDF
    Recent advances in wireless sensor networks have commanded many new protocols specifically designed for sensor networks where energy awareness is an important concern. This routing protocols might differ from depending on the application and the network architecture. To extend the lifetime of Wireless sensor network (WSN), an energy efficient scheme can be designed and developed via an algorithm to provide reasonable energy consumption and network for WSN. To maintain high scalability and better data aggregation, sensor nodes are often grouped into disjoint, non-overlapping subsets called clusters. Clusters create hierarchical WSNs which incorporate efficient utilization of limited resources of sensor nodes to reduce energy consumption, thus extend the lifetime of WSN. The objective of this paper is to present a state of the art survey and classification of energy efficient schemes for WSNs. Keywords: Wireless Sensor Network, clustering, energy efficient clustering, network lifetime, energy efficient algorithms, energy efficient routing, and sensor networks. DOI: 10.17762/ijritcc2321-8169.15024

    Survey on Data-Centric based Routing Protocols for Wireless Sensor Networks

    Full text link
    The great concern for energy that grew with the technological advances in the field of networks and especially in sensor network has triggered various approaches and protocols that relate to sensor networks. In this context, the routing protocols were of great interest. The aim of the present paper is to discuss routing protocols for sensor networks. This paper will focus mainly on the discussion of the data-centric approach (COUGAR, rumor, SPIN, flooding and Gossiping), while shedding light on the other approaches occasionally. The functions of the nodes will be discussed as well. The methodology selected for this paper is based on a close description and discussion of the protocol. As a conclusion, open research questions and limitations are proposed to the reader at the end of this paper
    • …
    corecore