688,118 research outputs found

    3E: Energy-Efficient Elastic Scheduling for Independent Tasks in Heterogeneous Computing Systems

    Get PDF
    Reducing energy consumption is a major design constraint for modern heterogeneous computing systems to minimize electricity cost, improve system reliability and protect environment. Conventional energy-efficient scheduling strategies developed on these systems do not sufficiently exploit the system elasticity and adaptability for maximum energy savings, and do not simultaneously take account of user expected finish time. In this paper, we develop a novel scheduling strategy named energy-efficient elastic (3E) scheduling for aperiodic, independent and non-real-time tasks with user expected finish times on DVFS-enabled heterogeneous computing systems. The 3E strategy adjusts processors’ supply voltages and frequencies according to the system workload, and makes trade-offs between energy consumption and user expected finish times. Compared with other energy-efficient strategies, 3E significantly improves the scheduling quality and effectively enhances the system elasticity

    Convolutional Networks for Fast, Energy-Efficient Neuromorphic Computing

    Full text link
    Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that i) approach state-of-the-art classification accuracy across 8 standard datasets, encompassing vision and speech, ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1200 and 2600 frames per second and using between 25 and 275 mW (effectively > 6000 frames / sec / W) and iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. For the first time, the algorithmic power of deep learning can be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.Comment: 7 pages, 6 figure

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    EPOBF: Energy Efficient Allocation of Virtual Machines in High Performance Computing Cloud

    Full text link
    Cloud computing has become more popular in provision of computing resources under virtual machine (VM) abstraction for high performance computing (HPC) users to run their applications. A HPC cloud is such cloud computing environment. One of challenges of energy efficient resource allocation for VMs in HPC cloud is tradeoff between minimizing total energy consumption of physical machines (PMs) and satisfying Quality of Service (e.g. performance). On one hand, cloud providers want to maximize their profit by reducing the power cost (e.g. using the smallest number of running PMs). On the other hand, cloud customers (users) want highest performance for their applications. In this paper, we focus on the scenario that scheduler does not know global information about user jobs and user applications in the future. Users will request shortterm resources at fixed start times and non interrupted durations. We then propose a new allocation heuristic (named Energy-aware and Performance per watt oriented Bestfit (EPOBF)) that uses metric of performance per watt to choose which most energy-efficient PM for mapping each VM (e.g. maximum of MIPS per Watt). Using information from Feitelson's Parallel Workload Archive to model HPC jobs, we compare the proposed EPOBF to state of the art heuristics on heterogeneous PMs (each PM has multicore CPU). Simulations show that the EPOBF can reduce significant total energy consumption in comparison with state of the art allocation heuristics.Comment: 10 pages, in Procedings of International Conference on Advanced Computing and Applications, Journal of Science and Technology, Vietnamese Academy of Science and Technology, ISSN 0866-708X, Vol. 51, No. 4B, 201

    Optimal Resource Allocation in Ultra-low Power Fog-computing SWIPT-based Networks

    Full text link
    In this paper, we consider a fog computing system consisting of a multi-antenna access point (AP), an ultra-low power (ULP) single antenna device and a fog server. The ULP device is assumed to be capable of both energy harvesting (EH) and information decoding (ID) using a time-switching simultaneous wireless information and power transfer (SWIPT) scheme. The ULP device deploys the harvested energy for ID and either local computing or offloading the computations to the fog server depending on which strategy is most energy efficient. In this scenario, we optimize the time slots devoted to EH, ID and local computation as well as the time slot and power required for the offloading to minimize the energy cost of the ULP device. Numerical results are provided to study the effectiveness of the optimized fog computing system and the relevant challenges
    corecore