3 research outputs found

    Analytical Modelling of Power Efficient Reliable Operation of Data Fusion in Wireless Sensor Network

    Get PDF
    Irrespective of inclusion of Wireless Sensor Network (WSN) in majority of the research proposition for smart city planning, it is still shrouded with some significant issues. A closer look into problems in WSN shows that energy parameter is the origination point of majority of the other problems in resource-constrained sensors as well as it significant minimizes the reliability in standard sensory operation in adverse environment. Therefore, this manuscript presents a novel analytical model that is meant for establishing a well balance between energy efficiency over multi-path data forwarding and reliable operation with improved network performance. The complete process is emphasized during data fusion stage to ensure data quality too. A simulation study has been carried out using benchmarked test-bed of MEMSIC nodes to find that proposed system offers good energy conservation process during data fusion operation as well as it also ensure good reliable operation in comparison to existing system

    Over-the-air computation for cooperative wideband spectrum sensing and performance analysis

    Get PDF
    For sensor network aided cognitive radio, cooperative wideband spectrum sensing can distribute the sampling and computing pressure of spectrum sensing to multiple sensor nodes (SNs) in an efficient way. However, this may incur high latency due to distributed data aggregation, especially when the number of SNs is large. In this paper, we propose a novel cooperative wideband spectrum sensing scheme using over-the-air computation. Its key idea is to utilize the superposition property of wireless channel to implement the summation of Fourier transform. This avoids distributed data aggregation by computing the target function directly. The performance of the proposed scheme is analyzed with imperfect synchronization between different SNs. Furthermore, a synchronization phase offset (SPO) estimation and equalization method is proposed. The corresponding performance after equalization is also derived. A working prototype based on universal software radio periphera (USRP) and Monte Carlo simulation is built to verify the performance of the proposed scheme

    Otimização da eficiência energética em redes operando com tsch: avaliação analítica de uma implementação prática.

    Get PDF
    The IEEE 802.15.4-2015 standard defines a number of Medium Access Control (MAC) layer protocols for low power wireless communications, which is desirable for constrained Internet of Things (IoT) devices. Originally defined in IEEE 802.15.4e amendment, the Time Slotted Channel Hopping (TSCH) is recently attracting the attention from the research community, due to its reduced contention (time scheduling) and robustness (channel hopping). However, the TSCH needs a certain level of synchronization between the nodes, which can lead to a higher energy consumption. A guard time mechanism is implemented to ensure that the nodes will hear the frames even if they are not perfectly synchronized. In this work, we implement the Guard Beacon strategy, aiming to reduce the guard time, and present a realistic energy consumption model for a Contiki OS-based TSCH networks. The analytical values have a good match with the results obtained from the Contiki Powertrace Tool running on a real TSCH network and demonstrate that the proposed scheme can reduce the overall power consumption of each node by 13.05%.O padrão IEEE 802.15.4-2015 define novos protocolos para a camada de acesso ao meio (MAC, do inglês Medium Access Control) com foco em redes de comunicação sem fio com baixo consumo de energia, o que é desejável para dispositivos de Internet das Coisas (IoT, do inglês Internet of Things) que apresentam restrições energéticas. Originalmente definido na emenda IEEE 802.15.4e, o esquema de Salto de Canais por Intervalo de Tempo (TSCH, do inglês Time Slotted Channel Hopping) tem atraído atenção da comunidade científica devido ao nível reduzido de contenção (agendamento no tempo) e robustez (salto de canais). Entretanto, para operar corretamente o TSCH necessita de um determinado nível de sincronização entre os nós da rede, o que pode levar a um maior consumo de energia. Um mecanismo de tempo de guarda é implementado para assegurar que os nós irão “ouvir” os pacotes ainda que não estejam perfeitamente sincronizados. Neste trabalho, implementa-se a estratégia de Guard Beacon visando reduzir o tempo de guarda necessário, e se apresenta um modelo de consumo de energia realista para redes operando com TSCH e Sistema Operacional Contiki. Os resultados analíticos têm boa precisão quando comparados com os resultados obtidos de uma rede TSCH real através da ferramenta Powertrace do Contiki e demonstram que o esquema proposto pode reduzir o consumo de energia geral de cada nó em até 13,05%
    corecore