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Over-the-air Computation for Cooperative Wideband
Spectrum Sensing and Performance Analysis

Li Chen, Nan Zhao, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE,
F. Richard Yu, Fellow, IEEE, and Guo Wei

Abstract—For sensor network aided cognitive radio, cooper-
ative wideband spectrum sensing can distribute the sampling
and computing pressure of spectrum sensing to multiple sensor
nodes (SNs). However, this may incur high latency due to
distributed data fusion, especially when the number of SNs is
large. In this paper, we propose a novel cooperative wideband
spectrum sensing scheme using over-the-air computation. Its
key idea is to utilize the superposition property of wireless
channel to implement the summation of Fourier transform. This
avoids distributed data fusion by computing the target function
directly. The performance of the proposed scheme is analyzed
with imperfect synchronization between different SNs considered.
Furthermore, a synchronization phase offset (SPO) estimation and
equalization method is proposed. The corresponding performance
after equalization is also derived. Both a working prototype
based on universal software radio periphera (USRP) and Monte
Carlo simulations are provided to verify the performance of the
proposed scheme.

Index Terms—cooperative sensing, cognitive radio, imperfect
synchronization, over-the-air computation, wireless sensor net-
work

I. INTRODUCTION

Due to the spectrum shortage caused by the ever-increasing
demand for higher data rate, cognitive radio has become
a prominent solution by allowing unlicensed use of vacant
licensed spectrum with dynamic access. A critical functionality
to enable spectrum sharing is spectrum sensing. Different
spectrum sensing methods have been proposed in the literature.
For example, spectrum sensing has been fully investigated
based on energy detection [1], [2] and other second-order
statistic features [3], [4].

Compared with narrowband spectrum sensing, wideband
spectrum sensing is more challenging due to the Nyquist
sampling theory. Also, the Fourier transform over a large
amount of sampled data requires a strong computing ability of
the sensor nodes (SNs) [5]. When the sampling and computing
ability is limited, the wideband spectrum can be divided
into multiple narrow ones, and the SN senses one at a time
with the help of reconfigurable bandpass filter and tunable
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oscillator [6], [7]. Such scheme sacrifices the real-time ability
for high speed sampling and large data computing. When
the band locations and their widths are known in advance,
Landau has demonstrated a minimal rate requirement that
equals to the sum of the bandwidths, which is below the
corresponding Nyquist rate [8]. A wideband spectrum sensing
scheme based on multicoset sampling was also proposed in [9],
which is a nonuniform sub-Nyquist sampling technique and
can be realized using an efficient multi-channel architecture. H.
Hassanieh et al. proposed the use of sparse Fourier transforms
to reconstruct a sparse spectrum in realtime without sampling
it at the Nyquist rate [10]. Y. Chen et al. conducted a survey
of the state-of-the-art spectrum occupancy models in [11].

Among these works, compressive sensing has been widely
studied as a popular sub-Nyquist sensing technology, since the
wideband spectrum is typically underutilized, or sparse in the
frequency domain. Compressive sensing was first introduced
in wideband spectrum sensing in [12], where the number of
the compressed measurements was determined by the sparsity
level of the spectrum. Without prior knowledge of the sparsity
level, a two-step compressed sensing scheme was proposed
in [13]. It estimated the actual sparsity level first and then
adjusted the number of compressed measurements. H. Sun
et al. proposed an iterative method to adaptively adjust the
number of compressed measurements for wideband spectrum
sensing in [14]. The output of geolocation database was
utilized to reduce the computation complexity and improve
the detection performance [15], [16]. X. Zhang et al. pro-
posed an efficient adaptively-regularized iterative algorithm
to implement wideband spectrum compressive sensing [17].
Although compressive sensing can recovery the spectrum at
sub-Nyquist rate, it requires random sampling of the signal
through analog mixing at Nyquist rates [18], which cannot
be achieved using standard low-speed analog to digital con-
verters ADCs. Also, to recover the original signal from the
compressed measurements requires an optimization problem,
which usually incurs high computation complexity. Therefore,
it is difficult to implement compressed sensing at SNs with
limited sampling and computing abilities.

When multiple SNs are available, cooperative spectrum
sensing can provide both spatial diversity gain and multi-node
sampling gain. The sensing performance of a single SN may
degrade due to fading and shadowing. By exploiting spatial
diversity from multiple SNs, a cooperative spectrum sensing
based on hard combining was investigated in [19], where SNs
performed compressive sensing individually but shared binary
decisions with each other. Different from the hard combining
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with one-bit decision, a soft-combining cooperative network
was proposed in [20], where the original autocorrelation of
the compressed signal was collected from each SN by the
fusion center (FC). H. Guo et al. provided a linear combination
rule to minimize the probability of missed detection subject
to an upper limit on the probability of false alarm [21].
Furthermore, multiple SNs can be also utilized to reduce the
sampling requirement of wideband spectrum sensing known as
parallel spectrum sensing, where each node senses a particular
band and the wideband spectrum estimation can be collected
from multiple SNs [22], [23]. The time allocation for sensing
duration and communication duration was optimized in [24]
for parallel spectrum sensing. Y. Wang et al. first discussed a
tradeoff between the spatial diversity achieved by cooperation
and the sampling gain achieved by parallel sensing in [25].
To jointly collect both diversity gain and sampling gain, they
developed a novel cooperative spectrum sensing technique
based on matrix rank minimization.

Although the sampling complexity can be reduced through
parallel sampling, it requires multiple access scheme to avoid
the inter-node interference during distributed data fusion, e.g.
time division multiple access (TDMA) or carrier sense multi-
ple access (CSMA), which incurs a high latency especially
when the number of SNs is large. Classical methods to
reduce the latency are limiting the number of cooperative
nodes through opportunistic scheduling [26], [27] or jointing
source channel coding to compress the data volume [28], [29].
Interference alignment as a promising technique for interfer-
ence management has been applied to spectrum sharing in
cognitive radios [30], [31]. However, the scheduling overhead
and orthogonal resources allocation are high.

Motivated by the above observations, we propose a coop-
erative wideband spectrum sensing scheme using over-the-
air computation for sensor network aided cognitive radio.
It utilizes the superposition property of wireless channel to
implement the summation of Fourier transform in order to
avoid distributed data fusion and compute the target function
directly. The spectrum signal is sampled by multiple SNs
in an interleaving way, which reduces the requirements on
both sampling and computing. After calculating the modified
discrete fourier transformation (DFT) at each SN individually,
the estimated spectrum of the FC is combined through the
wireless channel and hence referred to as over-the-air compu-
tation. Since the scheme focuses on the combined spectrum
rather than individual SNs’, the proposed scheme harnesses
the interference rather than avoiding it. The superposition
property of wireless channel is widely used in coherent
distributed estimation [32], compute-and-forward relay [33],
and structured function computing [34]. Various experimental
platforms have been built to verify the idea of over-the-air
computation in [35], [36]. To the best of our knowledge,
applying over-the-air computation to Fourier transform has
never been discussed before. We also built a prototype based
on universal software radio peripheral (USRP) software radios
to verify the proposed scheme. The contributions can be
summarized as follows.
• (Spectrum sensing using over-the-air computation) A

cooperative wideband spectrum sensing scheme using

over-the-air computation is proposed, which utilizes the
superposition property of wireless channel to implement
the summation of Fourier transform. It avoids distributed
data fusion and computes the target function directly.

• (The impact of SPO and noise) By considering syn-
chronization phase offset (SPO) between different SNs,
the corresponding estimated spectrum with aliasing effect
is provided. Based on the defined signal to aliasing
and noise ratio (SANR), the SANR for both uniform
distributed SPO and Gaussian distributed SPO is derived.

• (The SPO estimation and equalization) In order to
compensate the impact of imperfect synchronization, an
SPO estimation and equalization method is designed. The
performance of the SANR after equalization is derived
with the residual error considered.

Compared with compressive sensing, our method does not
need the spectrum sparse and the sparsity level known. Also,
it does not require random sampling ADC and optimization
problem computation at the SN. And compared with parallel
sensing, our method avoids distributed data fusion and fully
utilizes the superposition property of wireless channel to
implement over-the-air computation for Fourier transform.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model about wideband spectrum
sensing. The designed scheme is proposed in Section III. The
impact of imperfect synchronization and its corresponding
equalization design are provided in Section IV. Experimental
and numerical results are given in Section V. Conclusion is
provided in VI.

II. SYSTEM MODEL

In this work, we consider a cooperative sensor network
aided cognitive radio as illustrated in Fig.1. A dedicated
sensor network with L spatially distributed SNs indexed by
l ∈ {0, 1, · · · , L− 1} monitors the spectrum and reports the
observations to the cognitive user (CU). From the sensor-aided
network point of view, CU can be also regarded as the FC of
the network. The CU/FC recovers the spectrum and performs
the occupancy decision. There are two assumptions of the
model.
• Assumption 1: Considering a dense sensor network,

whose size is much smaller than the distance between
the network and the primary user (PU), the spectrum
observed by SNs and the CU/FC is assumed to be the
same.

• Assumption 2: For sensor network aided cognitive radio,
the CU/FC is only interested in some specific sub-bands
of the wideband, but the sensor node SN should have the
ability to sense a wideband in order to serve various CUs.

The spectrum source x (t) is assumed to be band-limited,
and its continuous Fourier transform (CFT) is

SF (Ω) =F [x (t)] =

∫ ∞
−∞

x (t) e−jΩtdt, (1)

where SF (Ω) = 0 when Ω < −Ω0 or Ω > Ω0. Applying
uniform sampling to x (t) with period T0, x (t) can be sampled
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Figure 1. The system model

as a discrete sequence x [n] = x (nT0) and the observe noise
during sampling stage is expresses as y (t).

In order to avoid spectrum aliasing, the sampling rate should
obey the Nyquist rate, i.e., 1/T0 ≥ Ω0/π. Assuming the
sequence length of x [n] is N , the corresponding DFT of x [n]
can be calculated as

S (k) =

N−1∑
n=0

x [n]e−j
2πnk
N , k ∈ [0, 1, · · · , N − 1] . (2)

For wideband spectrum with large Ω0, it is hard to satisfy
the Nyquist sampling rate. Meanwhile, the corresponding
computation complexity with large N is also high. The direct
implementation of DFT using (2) requires O

(
N2
)

operations.
Using fast fourier transform (FFT) to compute (2) needs
O (N logN) operations [37].

III. SENSING USING OVER-THE-AIR COMPUTATION

For wideband spectrum sensing, the SNs are constrained to
their limited sampling and computing abilities. In order to dis-
tribute the sampling and computing load to multiple SNs, we
propose a cooperative wideband spectrum estimation scheme
through distributed sensing and over-the-air computing, which
can be realized by a set of low-cost and low-power SNs.

A. Distributed sensing
From the time domain’s point of view, one way to relax the

requirement of sampling is letting multiple SNs sample x (t)
in an interleaved way. Specifically, the sampling sequence of
SN l is

xl [m] = x (mLT0 + lT0) + yl[m], (3)

where m ∈ {0, 1, · · · ,M − 1}, M = N/L and yl[m] is the
observation noise at SN l after sampling 1. The sampling

1In our work, we assume that sensing time of SN is generally several orders
of magnitude longer than the channel coherence time. Thus, only path loss
and shadowing are considered for channel models. Different SNs experience
similar path-loss effects and spatially correlated shadowing effects.

sequences at all SNs can be put together as the original
sequence of spectrum source. In this way, the requirement for
the sampling process at each SN is relaxed by a factor of L.

From the frequency domain’s point of view, S (k) in (2)
considering observe noise can be written as

S1 (k) =

M−1∑
m=0

L−1∑
l=0

xl [m]e−j
2πk
N (mL+l)

=

L−1∑
l=0

[Sl (k) + Yl(k)]

= S(k) + Y (k),

(4)

where Sl (k) is the modified DFT of xl [m] as

Sl (k) =

M−1∑
m=0

xl [m]e−j(
2πk
M m+ 2πkl

N ), (5)

and

S (k) =

L−1∑
l=0

Sl (k). (6)

Similarly, Yl(k) is the modified DFT of yl[m], and Y (k) =∑L−1
l=0 Yl (k).
This method relaxes the sampling requirement and de-

creases the computational complexity at each SN.

Proposition 1. (The computational complexity of modified
DFT) The direct implementation of the modified DFT in (5)
requires O (MN) operations. Utilizing FFT to compute (5),
the operations are reduced to max {O (M logM) ,O (N)}.

Proof. If we implement the modified DFT directly to calculate
(5), we would need one M -dimensional inner product for each
k ∈ {0, 1, · · · , N − 1}. Each inner product consists of M
multiplications and M−1 additions. Hence, one inner product
takes O(M) operations. We have to do N of them, meaning
that the total number of operations needed through the direct
way to calculate (5) is O(MN).

In order to utilize FFT to compute the modified DFT, (5)
can be rewritten as

Sl (k) = e−j
2πkl
N

M−1∑
m=0

xl [m]e−j
2πkm
M , (7)

which is composed of the FFT of xl [m] and a multiplication.
For all k ∈ {0, 1, · · · , N − 1}, the total number of oper-
ations needed for multiplication is O(N). Meanwhile, the
total number of operations needed for the FFT of xl [m] is
O (M logM). Thus, the total number of operations through
FFT to calculate (5) is max {O (M logM) ,O (N)}.

It is worth noting that the implementation of the inter-
leaved sampling faces several practical issues. One is the
synchronization of all SNs through clock sharing. The most
straightforward sharing clock is to connect a single external
clock to SNs clock input via wires. While, this way eliminates
the synchronization frequency offset (SFO), it also prevents
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mobility and flexibility. An alternative solution, called Air-
Share, was developed in [38] for synchronizing sensors by
broadcasting a reference-clock signal and its effectiveness
demonstrated using a prototype. While, this way can eliminate
the roots of SFO, but synchronization phase offset (SPO) is
inevitable. In the Section IV, we will discuss the impact of
SPO, and provide an SPO estimation and equalization method.

B. Over-the-air computing
After distributed sensing, each SN has its own Sl (k). In

order to recover the spectrum, we can adopt the traditional
“aggregate-then-compute” way, which aggregates Sl (k) from
all SNs then computes the estimated spectrum according
to (4). However, this requires multiple access for the SNs
(e.g. TDMA, CSMA) in order to avoid interference during
distributed data fusion, which incurs a high latency especially
when the number of SNs is large.

In the proposed scheme, we utilize the summation property
of wireless channel to compute (4) over-the-air. Assuming all
SNs transmit their own sensing results with perfect synchro-
nization, the received spectrum at the FC can be expressed
as

S2 (k) =

L−1∑
l=0

hlbl [Sl (k) + Yl(k)] + Z(k), (8)

where hl ∈ C is the wireless channel between SN l and the
FC, bl ∈ C is the precoding scalar of SN l, and Z(k) is the
received noise.

In order to compensate the non-uniform fading between
different SNs, a uniform-forcing precoding scalar bl can be
designed based on each SN’s own channel state information
(CSI)2, i.e.,

bl =

√
ηhl
∗

|hl|2
, (9)

where η is the uniform power level. Considering a transmit
power constraint at each SN, i.e., |bl|2 ≤ Pmax, η can be
calculated as

η = Pmaxmin
l

{
|hl|2

}
, (10)

which depends on the minimum channel power gain of all
SNs. We design a novel signaling procedure utilizing the ”OR”
property of the wireless channel to determine η which avoids
aggregating all SNs CSI. The signaling procedure is illustrated
in Fig. 2, which is composed of 3 steps.
• Step 1 (Local CSI estimation and quantization): Each

SNs estimates the CSI hl between itself and the FC based
on the pilot broadcasted by the FC. Then each SN cal-
culates and quantizes 1/|hl|2 into a binary representation
as

1

hl
=

bM∑
b=−bL

νb2
b, (11)

2We can use channel reciprocity to allow each SN to measure its channel
to the FC with very low overhead. Note that the forward and reverse channels
are always the same since they operate on the same carrier frequency in time
division duplex (TDD) systems.

SN l FC

Pilots broadcasting 

Response

Inquire nodes with 1 in MSB

Inquire  nodes with 1 in MSB 

and 1 in Second MSB

Response

Inquire  nodes with 1 in LSB

Response

Determine

Calculate h

Broadcast h

Estimate and 

quantize      1
l
h

{ }2
min

l l
h

Figure 2. The signaling procedure to determine η

where νb ∈ {0, 1}, bM is the most significant bit (MSB)
and bL is the least significant bit (LSB). MSB is deter-
mined by the possible maximum value of 1/|hl|2 and
LSB is determined by the tolerable quantized error.

• Step 2 (Determine significant bit one by one): The
FC uses several rounds of inquiry from MSB bM to
LSB bL in order to determine the maxl{1/|hl|2}, i.e.,
minl{|hl|2}. In the first inquiring round, SNs with 1 in
the MSB respond, while SNs with 0 in the MSB keep
silent. The FC detects the signal to determine whether
the MSB of maxl{1/|hl|2} is 1. If so, the MSB of
maxl{1/|hl|2} is set as 1. Otherwise, it is set as 0. In
the second inquiring round, if MSB is set as 1, the FC
inquires the SNs with MSB as 1 whether they have 1
in the second MSB. Otherwise, the FC inquires all IoT
devices whether they have 1 in the second MSB. Then
the second MSB is determined.

• Step 3 (η calculation and broadcasting): The FC
inquires in this way until the LSB is determined. Then
maxl{1/|hl|2}, i.e., minl{|hl|2}, can be determined. Af-
ter calculating η = Pmaxminl{|hl|2}, the FC broadcasts
the η to all SNs.

Then the received spectrum considering both observed noise
and received noise can be rewritten as

S2 (k) =
√
η

L−1∑
l=0

[Sl (k) + Yl(k)] + Z(k)

=
√
ηS(k) +

√
ηY (k) + Z(k).

(12)

In conclusion, the proposed scheme of wideband spectrum
estimation through distributed sensing and over-the-air com-
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Algorithm 1 Spectrum sensing through distributed sensing and
over-the-air computing
• Step 1 (Sampling in an interleaved way): L SNs sample
x (t) in an interleaving way, where SN l samples x (t)
with the sampling period LT0 and the sampling delay
lT0 to get the sampling sequence xl [m] in (3).

• Step 2 (Modified DFT in a distributed way): The
modified DFT Sl (k) in (5) is computed at SN l with
the sampling sequence xl [m] from Step 1. SNs perform
modified DFT to compute Sl (k) in a distributed way.

• Step 3 (Computation over-the-air): After precoded by
bl in (9), all SNs transmit Sl (k) with perfect synchroniza-
tion. The estimated spectrum S2 (k) in (12) is received
at the FC, which is combined over-the-air.

puting is summarized in Algorithm 1. The advantages of the
proposed scheme can be summarized as follows.
• (Low sampling requirement) The sampling requirement

of each SN decreases from 1/T0 to 1/LT0. The more SNs
cooperate to sense spectrum, the lower sampling rate is
required, which can be realized by a set of cheap and
low-power SNs.

• (Low computation complexity) The computation
complexity of each SN decreases from O

(
N2
)

to O (MN) with DFT and from O (N logN) to
max {O (M logM) ,O (N)} with FFT, respectively,
which decreases the computing requirement of SNs.

• (Low sensing latency) The proposed scheme avoids
distributed data fusion which incurs a high latency of
the reporting channels. It takes advantage of the wireless
channel superposition property to realize the summation
of Fourier transform over-the-air efficiently.

IV. IMPERFECT SYNCHRONIZATION

The proposed scheme can distribute the sampling and
computing load to multiple SNs and compute the estimated
spectrum over-the-air efficiently. However, the SNs may not
be perfectly synchronized. In this section, we analyze the
impact of the SPO. Furthermore, we propose an estimation
and equalization method to compensate the impact.

A. The impact of imperfect synchronization

Two related issues are usually considered for an imper-
fect synchronization. One is SPO, which is caused by the
misaligned initial clock instants between different SNs. The
other is SFO, which is caused as different SNs are driven by
independent clocks. In this paper, we only consider the SPO
between different SNs, because SFO can be avoided when SNs
share a common reference clock.

A random SPO of SN l is assumed to be Φl, which is caused
by misaligned initial instants of the reference clock for both
sampling and transmitting. Then the received spectrum with
SPO at the FC in (12) can be rewritten as

S3 (k) =
√
η

L−1∑
l=0

ejΦlSl (k) + Yl(k) + Z(k). (13)

desired spectrum

aliasing spectrum

noise spectrum
desired spectrum

Figure 3. The received spectrum with SPO and noise. The source spectrum
is x (t) = sin (f1x) + 2 sin (f2x), f1 = 15 MHz, and f2 = 30 MHz. The
number of SN L = 8 and the sampling frequency for each SN is 12.5 MHz.

The impact of SPO to the received spectrum can be given by
Proposition 2.

Proposition 2. (The received spectrum with SPO) The
received spectrum S3(k) with SPO in (13) can be rewritten as

S3 (k) =
√
ηα (0)SF

(
2πk

NT0

)
︸ ︷︷ ︸

desired spectrum

+
√
ηY (k) + Z (k)

+
√
η

L−1∑
i=1

α (i)SF

(
2πk

NT0
− 2πi

LT0

)
︸ ︷︷ ︸

aliasing spectrum

(14)

where

α (i) =
1

L

L−1∑
l=0

ejΦle−jl
2πi
L , i ∈ {0, 1, · · · , L− 1}, (15)

SF (Ω) is given in (1).

Proof. The Proposition 2 is proved in Appendix A.

Remark 1. (The impact of SPO and noise) According to
Proposition 2, the received spectrum at the FC is composed of
the desired spectrum, the aliasing spectrum caused by SPO,
the observe noise and the receive noise. An example of the
received spectrum with SPO and noise is shown in Fig.3,
where a sinusoidal spectrum signal is assumed.

Remark 2. (The combined power of α (i)) Actually α (i)
in (15) can be regarded as L-DFT of ejΦl/L. Then according
to Parsevals theorem, the combined power of α (i) can be
calculated as

L−1∑
i=0

|α (i)|2 = L

L−1∑
l=0

∣∣ejΦl/L∣∣2 = 1. (16)
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Remark 3. (The α (i) without SPO) If all SNs are perfectly
synchronized without SPO, i.e., Φl = 0, l ∈ [0, · · · , L− 1].
According to (15), we have that

α (i) =

{
1 i = 0

0 i ∈ {1, · · · , L− 1}
. (17)

Then the received spectrum S3(k) in (13) with SPO is equal
to S2(k) in (12) without SPO.

In order to provide quantitative analysis of the impact of
SPO and noise, we define the SANR as follows. Furthermore,
the probability of detection and the probability of false alarm
can be derived based on the defined SANR [39].

Definition 1. (SANR) The SANR can be defined as

γS =
PD

PA +NO +NR
, (18)

where PD is the power of the desired spectrum, PA is the
power of the aliasing spectrum, NO is the observe noise power
and NR is the receive noise power.

According to Definition 1, the SANR of the received
spectrum in (14) can be calculated as

γS =
E
(
|α (0)|2

)
P

E
(
L−1∑
i=1

|α (i)|2
)
P +NO +NR/η

(19)

where P is the spectrum signal power, E(|α (0)|2)P is the
desired spectrum power, E(

∑L−1
i=1 |α (i)|2)P is the aliasing

spectrum power, and η is the uniform power control level
in (10). The expression of SANR is given in the following
proposition.

Proposition 3. (The SANR with SPO and noise) For the
proposed spectrum estimation scheme, the SANR considering
SPO and noise in (19) can be calculated as

γS =
1 + (L− 1)ϕ∆Φ (1)

L−[1 + (L−1)ϕ∆Φ (1)]+LγO−1+L(ηγR)
−1 , (20)

where γO = S/NO is the signal to observe noise power
ratio (SONR), γR = S/NR is the signal to receive noise
power ratio (SRNR), ∆Φ = Φl − Φm is the difference of
SPO between different SNs, and ϕ∆Φ

(t) = E
(
ejt∆Φ

)
is the

characteristic function of ∆Φ.

Proof. The Proposition 3 is proved in Appendix B.

Remark 4. (The upper bound of the SANR) Because the
characteristic function ϕ∆Φ

(t) is bounded as |ϕ∆Φ
(t)| ≤ 1,

the upper bound of the SANR is

γ
(upper)
S =

1

γO−1 + (ηγR)
−1 . (21)

Actually, the upper bound of γS is the SANR without SPO.

Remark 5. (The SANR with uniform SPO) Assuming
that the difference of SPO between SNs satisfies uniform
distribution, i.e., ∆Φ ∼ U (−a, a), we have that

ϕ∆Φ
(t) =

sin ta

ta
= sinc (ta) . (22)

Then ϕ∆Φ (1) = sinc (a). And the corresponding SANR is

γ
(uniform)
S =

[1 + (L− 1) sinc (a)]

L−[1+(L−1) sinc (a)]+LγO−1+L(ηγR)
−1 .

(23)

Remark 6. (The SANR with Gaussian SPO) Assuming
that the difference of SPO between SNs satisfies Gaussian
distribution, i.e., ∆Φ ∼ N

(
0, σ2

Φ

)
, we have that

ϕ∆Φ
(t) = e−tσ

2
Φ/2. (24)

Then ϕ∆Φ (1) = e−σ
2
Φ/2. And the corresponding SANR is

γ
(Gaussian)
S =

[
1 + (L− 1) e−

σ2
Φ
2

]
L−
[
1 + (L− 1) e−

σ2
Φ
2

]
+LγO−1+L(ηγR)

−1
.

(25)

If energy detection is adopted to decide whether the sub-
band is occupied or not, the performance of the detector in
terms of its receiver operating characteristics (ROC) curve
can be given as follows.

Proposition 4. (The ROC with energy detection) Given
the received spectrum at the FC in (14), the probability of
detection PD can be expressed as a function of the probability
of false alarm PF , i.e.,

PD = 1− Fχ2
2

(
Fχ2

2

−1 (1− PF )

1 + γS

)
(26)

where Fχ2
2

(·) is the cumulative distribution function (CDF) of
chi-squared distributed variable with 2 degrees of freedom χ2

2.

Proof. The Proposition 4 is proved in Appendix C.

B. SPO Estimation and Equalization

In order to compensate the impact of SPO, we design
an SPO estimation and equalization method to improve the
performance of the proposed scheme. As illustrated in Fig.4,
the method is composed of 3 stages.
• Step 1 (Broadcasting sinusoidal pilot signal) The FC

broadcasts a strong and known sinusoidal pilot signal
AejΩ0t whose Fourier transform is 2πAδ (Ω− Ω0) to
all SNs. Because each SN has the CSI hl between itself
and the FC, the received sinusoid signal at each SN is
equivalent to AejΩ0t after post-processing by 1/hl. Also,
compared with the spectrum signal, the broadcasting pilot
is strong. Thus, we can neglect the spectrum signal, the
observe noise and the receive noise.

• Step 2 (Recovering the spectrum of pilot signal) The
pilot signal is recovered through distributed sensing and
over-the-air computing scheme proposed in Algorithm 1.
The estimated spectrum of the pilot signal at the FC can
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Figure 4. The SPO estimation and equalization

Algorithm 2 The SPO estimation and equalization method
• Step 1 (Pilot broadcasting): The FC broadcasts a strong

and known sinusoidal pilot signal AejΩ0t to all SNs.
The received sinusoid signal at each SN is equivalent
to AejΩ0t after post-processing by 1/hl.

• Step 2 (SPO estimation): The estimated spectrum
through distributed sensing and over-the-air computing
is (27), where α (i) and their corresponding SPO Φl can
be estimated.

• Step 3 (Aliasing equalization): The aliasing error can
be reconstructed through an L − 1 taps FIR filter in
(28), and the equalized results are the estimated spectrum
subtracting the reconstructed aliasing spectrum.

be given according to (14) with spectrum noise neglected,
i.e.,

Spilot (k) = 2πA
√
η

L−1∑
i=0

α (i)δ

(
2πk

NT0
− 2πi

LT0

)
, (27)

where α (i) is given in (15), which composed of the
desired spectrum line at i = 0, and aliasing spectrum
line at i = 1, 2, · · · , L − 1 with the amplitude α (i). As
is illustrated in Remark 2, α (i) can be regarded as DFT
of ejΦl/L. With measured α (i), we can get Φl through
IDFT of α (i).

• Step 3 (The SPO equalization at the FC) In order
to avoid the Φl feedback, an equalizer is designed to
eliminate the aliasing spectrum at the FC. The basic idea
of equalization is to reconstruct the aliasing error and
subtract it from the output signal. Then the desired signal
can be obtained. The aliasing error can be reconstructed
through an L − 1 taps FIR filter as illustrated in Fig.4,
i.e.,

E (k) =

L−1∑
i=1

α (i)

α (0)
δ (k −Mi) , (28)

Then the equalized results are the estimated spectrum
subtracting the reconstructed aliasing spectrum.

In conclusion, the proposed SPO estimation and equaliza-
tion method is summarized in Algorithm 2. It is worth noting
that an intuitive way to eliminate SPO impact after the SPO
estimation is feeding back the SPO to SNs. Then each SN
adjusts its phase or does a pre-equalization which can fully

eliminate the SPO theoretically. However, the feedback incurs
redundant communication cost, especially when the number
of SNs is large.

In order to avoid the feedback, we design the equalizer at
the FC based on the estimated SPO. The aliasing spectrum
can be perfect reconstructed at the FC if we have the desired
spectrum S (k). Unfortunately, we do not have S (k) at the FC
but the received spectrum S3 (k) in (13) with aliasing error and
noise. The only way is using S3 (k) instead, which will incur
residual error due to the original error.

C. Performance after equalization

With the equalizer designed in (28), the output spectrum
after equalization can be given as

S4 (k) =S3 (k)− S3 (k) ∗ E (k)

=
√
ηα (0)SF

(
2πk

NT0

)
−√η

L−1∑
i=1

α (i)SF

(
2πk

NT0
− 2πi

LT0

)
∗ E (k)︸ ︷︷ ︸

residual error caused by aliasing spectrum

− [
√
ηY (k) + Z (k)] ∗ [E (k)− 1]︸ ︷︷ ︸

residual error caused by noise

(29)

where S3 (k) and E (k) are given in (14) and (28) respectively.

Remark 7. (The upper bound of SANR after equalization)
The ideal equalization will eliminate all aliasing spectrum
causing by SPO and the corresponding upper bound of SANR
is

γ
(eq,up)
S ≤

E
(
|α (0)|2

)
P

NO +NR/η
. (30)

Proposition 5. (The lower bound of SANR after equal-
ization) The lower bound of SANR after equalization can be
given as

γ
(e,l)
S ≥

E
(
|α (0)|2

)
P

Λ2 (L) E
(
L−1∑
i=1

|α (i)|2
)
P+[Λ2 (L)+1]

(
NO+NR

η

) ,
(31)

where

Λ (L) = E

(
L−1∑
i=1

∣∣∣∣ α (i)

α (0)

∣∣∣∣
)
. (32)

Proof. The Proposition 5 is proved in Appendix D.

Remark 8. (The equalization gain) Compared with the
SANR before equalization in (19), when the observe noise
power NO and receive noise NR are relatively small, the
equalization gain can be approximated as

G ≥
γ

(e,l)
S

γS
≈ 1

Λ2 (L)
(33)
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Figure 5. The experimental platform

The equalization gain G ≥ 1, when Λ2 (L) ≤ 1. It means
that we can get an improvement in SANR after equalization if
α(i) caused by the SPO, the observe noise and receive noise
are all relatively small. That also means the better the initial
performance, the better the equalization performance.

Remark 9. (The cascading equalization) When G ≥ 1,
a better SANR can be further achieved by cascading the
equalizer, which means the equalization can be realized by
multiple stages, and the equalized output in this stage is used
as the equalized input in the next stage. Similar to Proposition
4, the lower bound of SANR after K stages equalization can
be given as

γ
(e,l)
S ≥

E
(
|α (0)|2

)
P

Λ2K(L) E
(
L−1∑
i=1

|α (i)|2
)
P+[Λ2K(L)+1]

(
NO+NR

η

)
(34)

And the corresponding equalization gain with relatively small
observe noise power and receive noise power is

G ≥
γ

(e,l)
S

γS
≈ 1

Λ2K (L)
(35)

V. NUMERICAL RESULTS AND DISCUSSION

A. Experimental results

We built an experimental platform using universal software
radio peripheral (USRP) platform to verify the proposed spec-
trum sensing scheme. The USRP platform is well-known for
its low-cost and high-quality realization of software-defined-
radio, which provides various functionalities to efficiently
realize wireless system that operates in the RF band.

The experimental platform is composed of 2 SNs and 1 FC
as illustrated in Fig.5(a). The FC is shown in Fig.5(b), which
is composed of a 2.4 GHz narrowband antenna to receive the
estimated spectrum from SNs, a USPR X310 to convert the
received signal to the digital one, a PC to show the estimated
spectrum and a spectrum analyzer to reveal the exact spectrum.

Figure 6. The estimated spectrum form 1 GHz to 6 GHz.
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Figure 7. The estimated spectrum from 2.42 GHz to 2.45 GHz

The USRP is connected to the PC through ethernet port. The
output spectrum is shown through NI LabView on the PC. The
SN is shown in Fig.5(c), which is composed of a wideband
antenna (CBX-120: 1.2 GHz∼6 GHz) for spectrum sensing,
a USPR X310 to sample the signal then do modified DFT,
and a 2.4 GHz narrowband antenna to transmit the distributed
sensing results. The transmit symbol rate is 1 M symbol/sec
with I/Q channels.

The reconstructed spectrum form 1 GHz to 6 GHz is shown
in Fig.6 3, where the details from 2.42 GHz to 2.45 GHz is also
shown and compared to the spectrum sensing results of the
spectrum analyzer in Fig.7. The accuracy of the reconstructed
spectrum is evaluated by the relative reconstruction mean
squared error (r-MSE). Compared with the spectrum measured
by the spectrum analyzer. The r-MSE is defined as

3Each block represents a 1 MHz bandwidth frequency band and the color
of the block represents the normalized power of the frequency band. The
frequency of the each band can be calculated based on the summation of
x-axe value and y-axe value.
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r-MSE =
‖S′ (k)− S (k)‖
‖S (k)‖

, (36)

where the reference of the measurement is made by the
spectrum analyzer as shown in Fig.5(b). The r-MSE of the
reconstructed spectrum (2.42 GHz∼2.45 GHz) versus different
average transmit power (-15 dBm∼15 dBm) is given in Fig.8.
The distances between FC and SNs are fixed to 5m. Both
line-of-sight (LOS) scenario and non-line-of-sight (NLOS)
scenario are evaluated. It can be seen that the r-MSE decreases
when the transmit power increases, and that the performance
of LOS has 5 dB gain over that of NLOS.

B. Monte-Carlo simulation

In order to illustrate the expected performance of the
proposed scheme, we adopt Monte-Carlo simulations of 105

times. The SONR and SRNR are given as γO = 20 dB
and γR = 20 dB, respectively. Different numbers of SNs
L = 2, 8, 32 are simulated.

In Fig.9, the SANR considering SPO is shown, where both
Gaussian distributed SPO and uniformly distributed SPO are
simulated. In Fig.9(a), the Gaussian SPO of different SNs Φ ∼
N (0, σ2

Φ) and its variance σ2
Φ = 0 ∼ 0.5. It can be seen that

the increase of σ2
Φ will decrease the SANR, and the decreasing

rate decreases with the increase of σ2
Φ. In Fig.9(b), the uniform

SPO of different SNs Φ ∼ U(−aπ, aπ) and its scale a = 0 ∼
0.5. It can be seen that the increase of a will decrease the
SANR, and the decreasing rate is almost the same. When the
number of SNs increases, the SANR decreases. That is because
the impact of SPO will be intensified with more SNs.

The SANR after equalization with different cascading num-
bers (K = 1, 3) is shown in Fig.10. It is compared with the
SANR without equalization and the equalization benchmark,
i.e., the upper-bound SANR without residual error. Both
uniformly distributed SPO and Gaussian distributed SPO are
given. The number of SNs is L = 8. It can be seen that
the equalization can improve the average SANR especially
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Figure 10. The average SANR with equalization

when the SPO is small. While, as the SPO increases, the
performance gain between the equalized results and the re-
sults without equalization decreases, and the performance gap
between the equalization benchmark and the equalized results
increases. That is because the residual error after equalization
increases with the increase of SPO. While, the performance
gain between equalization with K = 1 and equalization with
K = 3 increases as the SPO increases. It means that the
cascading equalization is beneficial to reduce the residual error.

The ROC curve with energy detection is shown in Fig.11,
where the detection probability PD is the function of the false
alarm probability PF . The SPO is Gaussian distributed as
Φ ∼ N (0, 1). The number of SN is L = 8. The performance
of equalization with different cascading numbers (K = 1, 3) is
compared with the performance without equalization and the
performance benchmark, i.e., the perfect equalization without
residual error. Both the simulated results and the theoreti-
cal performances are compared. The simulated performances
without equalization is almost the same with the theoretical
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performances without equalization, which verifies the accuracy
of the theoretical analysis. While, the simulated performances
of equalization is better than the theoretical performances. That
is because we derive the theoretical results based on the lower
bound of SANR after K stages equalization. It can be seen that
the equalization can improve the ROC performance, especially
with cascading equalization.

VI. CONCLUSION

In this work, we have proposed a novel cooperative spec-
trum sensing via over-the-air computation for sensor network
aided cognitive radio, which does not only distribute the
sampling and computing pressure to multiple SN but also
avoids a high latency during distributed data fusion. Multiple
SNs are employed to sample the wideband spectrum signal
in an interleaving way. The modified DFT is computed at
each SNs locally. The estimated spectrum is combined at the
FC through over-the-air computing, which fully utilizes the
superposition property of the wireless channel. The impact
of imperfect synchronization between SNs is analyzed. And
a corresponding SPO estimation and equalization method is
also proposed. The improved performance after equalization
is further derived. An experimental prototype has been built
to verify the proposed scheme based on USRP. Monte Carlo
simulation is also provided to illustrate its expected perfor-
mance.

APPENDIX A
PROOF OF PROPOSITION 2

The sampling sequence of SN l can be rewritten as

xl [m] = x (mT0 + lT0)

= x (t− lT0) ·
∞∑

m=−∞
δ (t−mT0) .

(37)

Then the Fourier transforms of xl [m] can be calculated as

SF,l(Ω) = F {xl [m]}

=
1

2π
· F {x (t− lT0)} ∗ F

{ ∞∑
m=−∞

δ (t−mT0)

}
,

(38)
where

F {x (t− lT0)} = e−jlΩT0SF (Ω) (39)

and

F

{ ∞∑
m=−∞

δ (t−mT0)

}
=

2π

LT0

∞∑
i=−∞

δ

(
Ω− 2πi

LT0

)
.

(40)
Then

SF,l(Ω) =
1

LT0

∞∑
i=−∞

e−jl
2πi
L SF

(
Ω− 2πi

LT0

)
. (41)

The summation of SF,l with the phase offset Φl can be
calculated as

L−1∑
l=0

ejΦlSF,l (Ω)=
1

LT0

L−1∑
l=0

ejΦl
∞∑

i=−∞
e−jl

2πi
L SF

(
Ω−2πi

LT0

)
,

(42)
which is a periodic function of i with a period L. Considering
a period i ∈ [0, 1, · · · , L− 1], the spectrum of i = 0 is the
desired spectrum, and the spectrum of i ∈ [1, · · · , L− 1] is
aliasing spectrum. Then it can be rewritten as

L−1∑
l=0

ejΦlSF,l (Ω)=α (0)SF (Ω) +

L−1∑
i=1

α (i)SF

(
Ω− 2πi

LT0

)
,

(43)
where

α (i) =

√
η

L

L−1∑
l=0

ejΦle−jl
2πi
L , i ∈ {0, 1, · · · , L− 1}. (44)

Because the DFT S (k) is the CFT with Ω=2πk/NT0, the
received spectrum in (13) can be calculated as

S3 (k) =
√
η

L∑
l=1

ejΦlSF,l

(
2πk

NT0

)
+
√
ηY (k) +Z(k). (45)

According to (43) and (45), it completes the proof.

APPENDIX B
PROOF OF PROPOSITION 3

According to the definition of α(i) in (15), |α (0)|2 can be
calculated as
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|α (0)|2 =
1

L2

∣∣∣∣∣
L−1∑
l=0

ejΦl

∣∣∣∣∣
2

=
1

L2

L−1∑
l=0

ejΦl
L−1∑
m=0

e−jΦm

=
1

L2

L+

L−1∑
l=0

∑
m 6=l

ej(Φl−Φm)


=

1

L2

L+

L−1∑
l=0

∑
m 6=l

ej∆Φ

 .

(46)

Then the expectation of |α (0)|2 can be calculated as

E
[
|α (0)|2

]
=

1

L2

L+

L−1∑
l=0

∑
m6=l

E
(
ej∆Φ

)
(a)
=

1

L
[1 + (L− 1)ϕ∆Φ (1)] ,

(47)

where the procedure (a) is according to the definition of
characteristic function ϕ∆Φ (t) = E

(
ejt∆Φ

)
. According to the

combined power of α(i) in (16), we have

E

[
L−1∑
i=1

|α (i)|2
]

= 1− 1

L
[1 + (L− 1)ϕ∆Φ (1)] , (48)

which completes the proof.

APPENDIX C
PROOF OF PROPOSITION 4

The wideband spectrum is divided into K sub-bands. We
test the following binary hypotheses to decide whether the k-th
sub-band is occupied or not, i.e.,

H0,k : S3 (k) = Ne (k)

H1,k : S3 (k) = S (k) +Ne (k)
(49)

where Ne (k) is the effective noised composed of aliasing
spectrum, the observe noise and the receive noise. S (k)
and Ne (k) are assumed to be Gaussian distributed, i.e.,
S (k) ∼ CN (0, PD) and Ne (k) ∼ CN (0, PA + PO + PR)
according to Definition 1. The energy detector measures the
energy of the received signal of a particular sub-band and
compares it to a predetermined threshold, i.e.,

|S3 (k)|2
H1,k

≷
H0,k

Γk,∀k (50)

where Γk is the decision threshold of sub-band k, and |S3 (k)|2
is chi-squared distributed with 2 degrees of freedom, which
gives the probability of false alarm as

PF = Pr
(
|S3 (k)|2 > Γk |H0,k

)
= 1− Fχ2

2

(
2Γk

PA +NO +NR

)
,

(51)

and the probability of detection as

PD = Pr
(
|Rk|2 > Γk |H1,k

)
= 1− Fχ2

2

(
2Γk

PD + PA +NO +NR

)
= 1− Fχ2

2

(
Fχ2

2

−1 (1− PF )

1 + γSANR

)
.

(52)

It completes the proof.

APPENDIX D
PROOF OF PROPOSITION 3

The Fourier transforms of E (k) is

F [E (k)] =

L−1∑
i=1

α (i)

α (0)
e−jω2πiM . (53)

Then we have the following inequality.

|F [E (k)]| =

∣∣∣∣∣
L−1∑
i=1

α (i)

α (0)
e−jω2πiM

∣∣∣∣∣ ≤
L−1∑
i=1

∣∣∣∣ α (i)

α (0)

∣∣∣∣. (54)

The signal power after equalization can be calculated ac-
cording to the principle that the convolution in time domain
is the product in frequency domain. Considering the output
after equalization in (29), the power of the residual aliasing
spectrum has an upper bound as

E2 [|F [E (k)]|]PA ≤ E2

[
L−1∑
i=1

∣∣∣∣ α (i)

α (0)

∣∣∣∣
]

E

(
L−1∑
i=1

|α (i)|2
)
P.

(55)
And the power of the residual observe noise and receive noise
in (29) also has an upper bound as[

E2 (|F [E (k)]|) + 1
](

NO +
NR
η

)
≤

[
E2

(
L−1∑
i=1

∣∣∣∣ α (i)

α (0)

∣∣∣∣
)

+ 1

](
NO +

NR
η

)
.

(56)

Then the lower bound of SANR in (31) can be given.
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