207 research outputs found

    Energy efficiency in heterogeneous wireless access networks

    Get PDF
    In this article, we bring forward the important aspect of energy savings in wireless access networks. We specifically focus on the energy saving opportunities in the recently evolving heterogeneous networks (HetNets), both Single- RAT and Multi-RAT. Issues such as sleep/wakeup cycles and interference management are discussed for co-channel Single-RAT HetNets. In addition to that, a simulation based study for LTE macro-femto HetNets is presented, indicating the need for dynamic energy efficient resource management schemes. Multi-RAT HetNets also come with challenges such as network integration, combined resource management and network selection. Along with a discussion on these challenges, we also investigate the performance of the conventional WLAN-first network selection mechanism in terms of energy efficiency (EE) and suggest that EE can be improved by the application of intelligent call admission control policies

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    An energy saving small cell sleeping mechanism with cell range expansion in heterogeneous networks

    Get PDF
    In recent years, the explosion of wireless data traffic has resulted in a trend of large scale dense deployment of small cells, with which the rising cost of energy has attracted a lot of research interest. In this paper, we present a novel sleeping mechanism for small cells to decrease the energy consumption of heterogeneous networks. Specifically, in the cell-edge area of a macrocell, the small cells will be put into sleep where possible and their service areas will be covered by the range-expanded small cells nearby and the macrocell; in areas close to the macrocell, the user equipments associated with a sleeping small cell will be handed over to the macrocell. Furthermore, we use enhanced inter-cell interference coordination techniques to support the range expanded small cells to avoid QoS degradation. Using a stochastic geometry-based network model, we provide the numerical analysis of the proposed approach, and the results indicate that the proposed sleeping mechanism can significantly reduce the power consumption of the network compared with the existing sleeping methods while guaranteeing the QoS requirement

    ENERGY EFFICIENCY VIA HETEROGENEOUS NETWORK

    Get PDF
    The mobile telecommunication industry is growing at a phenomenal rate. On a daily basis, there are continuous inflow of mobile users and sophisticated devices into the mobile network. This has triggered a meteoric rise in mobile traffic; forcing network operators to embark on a series of projects to increase the capacity and coverage of mobile networks in line with growing traffic demands. A corollary to this development is the momentous rise in energy bills for mobile operators and the emission of a significant amount of CO2 into the atmosphere. This has become worrisome to the extent that regulatory bodies and environmentalist are calling for the adoption of more “green operation” to curtail these challenges. Green communication is an all-inclusive approach that champions the cause of overall network improvement, reduction in energy consumption and mitigation of carbon emission. The emergence of Heterogeneous network came as a means of fulfilling the vision of Green communication. Heterogeneous network is a blend of low power node overlaid on Macrocell to offload traffic from the Macrocell and enhance quality of service of cell edge users. Heterogeneous network seeks to boost the performance of LTE-Advanced beyond its present limit, and at the same time, reduce energy consumption in mobile wireless network. In this thesis, we explore the potential of heterogeneous network in enhancing the energy efficiency of mobile wireless network. Simulation process sees the use of a co-deployment of Macrocell and Picocell in cluster (Hot spot) and normal scenario. Finally, we compared the performance of each scenario using Cell Energy Efficiency and the Area Energy Efficiency as our performance metricfi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Energy Efficient Small Cell Planning For High Capacity Wireless Networks

    Get PDF
    This thesis presents a new strategy to densify Small Cells (i.e., add more low powered base stations within macro networks) and enhance the coverage and capacity of Heterogeneous Networks. This is accomplished by designing Micro Cell for outdoor applications, Pico and Femtocell for indoor applications. It is shown that, there exists a free space propagation medium in all propagation environments due to Fresnel zones, and the path loss slope within this zone is similar to free space propagation medium. This forms the basis of our development of the present work. The salient feature of the proposed work has two main considerations (a) The cell radius of Small Cells must be within the first Fresnel zone break point, and (b) The minimum inter-cell distance must be greater than twice of Small Cell radius. The proposed network is simulated in real a radio network simulator called ATOLL. The simulation results showed that densify Small Cells not only enhanced the capacity and coverage of Heterogeneous Networks but also improved the carrier to interference ratio significantly. Since the proposed work allows UE (user equipment) to have Line of Sight (LOS) communication with the serving cell, and UE can have higher uplink (UL) signal to interference plus noise ratio (SINR) that will further allow UE to reduce its transmission power, which will consequently lead to a longer battery life for the UE and reduce the interference in the system
    • …
    corecore