71 research outputs found

    Konoritsu musen rokaru eria nettowaku ni okeru tagen akusesu hoshiki ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲3738号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2012/7/25 ; 早大学位記番号:新6109Waseda Universit

    Energy consumption evaluation on the MAC layer of PRCSMA

    Get PDF
    En este proyecto se realizará un estudio de los actuales modelos de consumo energético para comunicaciones inalámbricas. El objetivo del trabajo es evaluar y optimizar el consumo de energía de un protocolo de acceso al medio diseñado para comunicaciones cooperativas: PRCSMA. Este protocolo está basado en el estándar IEEE 802.11 para redes de área local. La meta principal es identificar las condiciones bajo las que los esquemas de cooperación pueden resultar beneficiosos en términos de ahorro de energía consumida

    Improving Performance for CSMA/CA Based Wireless Networks

    Get PDF
    Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based wireless networks are becoming increasingly ubiquitous. With the aim of supporting rich multimedia applications such as high-definition television (HDTV, 20Mbps) and DVD (9.8Mbps), one of the technology trends is towards increasingly higher bandwidth. Some recent IEEE 802.11n proposals seek to provide PHY rates of up to 600 Mbps. In addition to increasing bandwidth, there is also strong interest in extending the coverage of CSMA/CA based wireless networks. One solution is to relay traffic via multiple intermediate stations if the sender and the receiver are far apart. The so called “mesh” networks based on this relay-based approach, if properly designed, may feature both “high speed” and “large coverage” at the same time. This thesis focusses on MAC layer performance enhancements in CSMA/CA based networks in this context. Firstly, we observe that higher PHY rates do not necessarily translate into corresponding increases in MAC layer throughput due to the overhead of the CSMA/CA based MAC/PHY layers. To mitigate the overhead, we propose a novel MAC scheme whereby transported information is partially acknowledged and retransmitted. Theoretical analysis and extensive simulations show that the proposed MAC approach can achieve high efficiency (low MAC overhead) for a wide range of channel variations and realistic traffic types. Secondly, we investigate the close interaction between the MAC layer and the buffer above it to improve performance for real world traffic such as TCP. Surprisingly, the issue of buffer sizing in 802.11 wireless networks has received little attention in the literature yet it poses fundamentally new challenges compared to buffer sizing in wired networks. We propose a new adaptive buffer sizing approach for 802.11e WLANs that maintains a high level of link utilisation, while minimising queueing delay. Thirdly, we highlight that gross unfairness can exist between competing flows in multihop mesh networks even if we assume that orthogonal channels are used in neighbouring hops. That is, even without inter-channel interference and hidden terminals, multi-hop mesh networks which aim to offer a both “high speed” and “large coverage” are not achieved. We propose the use of 802.11e’s TXOP mechanism to restore/enfore fairness. The proposed approach is implementable using off-the-shelf devices and fully decentralised (requires no message passing)

    Energy consumption evaluation on the MAC layer of PRCSMA

    Get PDF
    En este proyecto se realizará un estudio de los actuales modelos de consumo energético para comunicaciones inalámbricas. El objetivo del trabajo es evaluar y optimizar el consumo de energía de un protocolo de acceso al medio diseñado para comunicaciones cooperativas: PRCSMA. Este protocolo está basado en el estándar IEEE 802.11 para redes de área local. La meta principal es identificar las condiciones bajo las que los esquemas de cooperación pueden resultar beneficiosos en términos de ahorro de energía consumida

    Performance modelling and enhancement of wireless communication protocols

    Get PDF
    In recent years, Wireless Local Area Networks(WLANs) play a key role in the data communications and networking areas, having witnessed significant research and development. WLANs are extremely popular being almost everywhere including business,office and home deployments.In order to deal with the modem Wireless connectivity needs,the Institute of Electrical and Electronics Engineers(IEEE) has developed the 802.11 standard family utilizing mainly radio transmission techniques, whereas the Infrared Data Association (IrDA) addressed the requirement for multipoint connectivity with the development of the Advanced Infrared(Alr) protocol stack. This work studies the collision avoidance procedures of the IEEE 802.11 Distributed Coordination Function (DCF) protocol and suggests certain protocol enhancements aiming at maximising performance. A new, elegant and accurate analysis based on Markov chain modelling is developed for the idealistic assumption of unlimited packet retransmissions as well as for the case of finite packet retry limits. Simple equations are derived for the through put efficiency, the average packet delay, the probability of a packet being discarded when it reaches the maximum retransmission limit, the average time to drop such a packet and the packet inter-arrival time for both basic access and RTS/CTS medium access schemes.The accuracy of the mathematical model is validated by comparing analytical with OPNET simulation results. An extensive and detailed study is carried out on the influence of performance of physical layer, data rate, packet payload size and several backoff parameters for both medium access mechanisms. The previous mathematical model is extended to take into account transmission errors that can occur either independently with fixed Bit Error Rate(BER) or in bursts. The dependency of the protocol performance on BER and other factors related to independent and burst transmission errors is explored. Furthermore, a simple-implement appropriate tuning of the back off algorithm for maximizing IEEE 802-11 protocol performance is proposed depending on the specific communication requirements. The effectiveness of the RTS/CTS scheme in reducing collision duration at high data rates is studied and an all-purpose expression for the optimal use of the RTS/CTS reservation scheme is derived. Moreover, an easy-to-implement backoff algorithm that significantly enhances performance is introduced and an alternative derivation is developed based on elementary conditional probability arguments rather than bi-dimensional Markov chains. Finally, an additional performance improvement scheme is proposed by employing packet bursting in order to reduce overhead costs such as contention time and RTS/CTSex changes. Fairness is explored in short-time and long-time scales for both the legacy DCF and packet bursting cases. AIr protocol employs the RTS/CTS medium reservation scheme to cope with hidden stations and CSMA/CA techniques with linear contention window (CW) adjustment for medium access. A 1-dimensional Markov chain model is constructed instead of the bi-dimensional model in order to obtain simple mathematical equations of the average packet delay.This new approach greatly simplifies previous analyses and can be applied to any CSMA/CA protocol.The derived mathematical model is validated by comparing analytical with simulation results and an extensive Alr packet delay evaluation is carried out by taking into account all the factors and parameters that affect protocol performance. Finally, suitable values for both backoff and protocol parameters are proposed that reduce average packet delay and, thus, maximize performance

    Energy-aware medium access control protocols for wireless sensors network applications

    Get PDF
    The main purpose of this thesis was to investigate energy efficient Medium Access Control (MAC) protocols designed to extend the lifetime of a wireless sensor network application, such as tracking, environment monitoring, home security, patient monitoring, e.g., foetal monitoring in the last weeks of pregnancy. From the perspective of communication protocols, energy efficiency is one of the most important issues, and can be addressed at each layer of the protocol stack; however, our research only focuses on the medium access control (MAC) layer. An energy efficient MAC protocol was designed based on modifications and optimisations for a synchronized power saving Sensor MAC (SMAC) protocol, which has three important components: periodic listen and sleep, collision and overhearing avoidance and message passing. The Sensor Block Acknowledgement (SBACK) MAC protocol is proposed, which combines contention-based, scheduling-based and block acknowledgement-based schemes to achieve energy efficiency. In SBACK, the use of ACK control packets is reduced since it will not have an ACK packet for every DATA packet sent; instead, one special packet called Block ACK Response will be used at the end of the transmission of all data packets. This packet informs the sender of how many packets were received by the receiver, reducing the number of ACK control packets we intended to reduce the power consumption for the nodes. Hence more useful data packets can be transmitted. A comparison study between SBACK and SMAC protocol is also performed. Considering 0% of packet losses, SBACK decreases the energy consumption when directly compared with S-MAC, we will have always a decrease of energy consumption. Three different transceivers will be used and considering a packet loss of 10% we will have a decrease of energy consumption between 10% and 0.1% depending on the transceiver. When there are no retransmissions of packets, SBACK only achieve worst performance when the number of fragments is less than 12, after that the decrease of average delay increases with the increase of the fragments sent. When 10% of the packets need retransmission only for the TR1000 transceiver worst results occurs in terms of energy waste, all other transceivers (CC2420 and AT86RF230) achieve better results. In terms of delay if we need to retransmit more than 10 packets the SBACK protocol always achieves better performance when comparing with the other MAC protocols that uses ACK

    Analysis of an IEEE 802.11-based protocol for real-time applications in agriculture

    Get PDF
    La tesi descrive un sistema originale basato sullo standard IEEE 802.11 per il monitoraggio ed il controllo remoto in tempo reale di una macchina agricola attraverso dispositivi commerciali quali smartphones e tablet. Le prestazioni del sistema sono state attentamente caratterizzate, sia dal punto di vista teorico che da quello pratico, tramite numerose sessioni di misure sperimentali. Opportune soluzioni alle problematiche riscontrate sono proposte, evidenziando sostanziali miglioramentiopenEmbargo temporaneo per motivi di segretezza e/o di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    Situation-Aware Rate and Power Adaptation Techniques for IEEE 802.11

    Get PDF
    The current generation of IEEE 802.11 Wireless Local Area Networks (WLANs) provide multiple data rates from which the different physical (PHY) layers may choose. The rate adaptation algorithm (RAA) is an essential component of 802.11 WLANs which completely determines the data rate a device may use. Some of the key challenges facing data rate selection are the constantly varying wireless channel, selecting the data rate that will result in the maximum throughput, assessing the conditions based on limited feedback and estimating the link conditions at the receiver. Current RAAs lack the ability to sense their environment and adapt accordingly. 802.11 WLANs are deployed in many locations and use the same technique to choose the data rate in all locations and situations. Therefore, these RAAs suffer from the inability to adapt the method they use to choose the data transmission rate. In this thesis, a new RAA for 802.11 WLANs is proposed which provides an answer to the many challenges faced by RAAs. The proposed RAA is termed SARA which stands for Situation-Aware Rate Adaptation, and combines the use of the received signal strength and packet error rate to enable situational awareness. SARA adapts to the current environmental situation experienced at the moment to rapidly take advantage of changing channel conditions. In addition to SARA, a method to optimize the transmission power for, but not limited to, IEEE 802.11 WLANs is proposed which can determine the minimum transmission power required by a station (STA) or base station (BS) for successful transmission of a data packet. The technique reduces the transmission power to the minimum level based on the current situation while maintaining QoS constraints. The method employs a Binary Search to quickly determine the minimum transmission power with low complexity and delay. Such a technique is useful to conserve battery life in mobile devices for 802.11 WLANs. Both algorithms are implemented on an Atheros device driver for the FreeBSD operating system. SARA is compared to the benchmark algorithm SampleRate while an estimate of the energy consumed as well as the energy saved is provided for the minimum transmission power determination
    corecore