48 research outputs found

    Using hidden Markov models for iterative non-intrusive appliance monitoring

    No full text
    Non-intrusive appliance load monitoring is the process of breaking down a household’s total electricity consumption into its contributing appliances. In this paper we propose an approach by which individual appliances are iteratively separated from the aggregate load. Our approach does not require training data to be collected by sub-metering individual appliances. Instead, prior models of general appliance types are tuned to specific appliance instances using only signatures extracted from the aggregate load. The tuned appliance models are used to estimate each appliance’s load, which is subsequently subtracted from the aggregate load. We evaluate our approach using the REDD data set, and show that it can disaggregate 35% of a typical household’s total energy consumption to an accuracy of 83% by only disaggregating three of its highest energy consuming appliances

    Interleaved Factorial Non-Homogeneous Hidden Markov Models for Energy Disaggregation

    Full text link
    To reduce energy demand in households it is useful to know which electrical appliances are in use at what times. Monitoring individual appliances is costly and intrusive, whereas data on overall household electricity use is more easily obtained. In this paper, we consider the energy disaggregation problem where a household's electricity consumption is disaggregated into the component appliances. The factorial hidden Markov model (FHMM) is a natural model to fit this data. We enhance this generic model by introducing two constraints on the state sequence of the FHMM. The first is to use a non-homogeneous Markov chain, modelling how appliance usage varies over the day, and the other is to enforce that at most one chain changes state at each time step. This yields a new model which we call the interleaved factorial non-homogeneous hidden Markov model (IFNHMM). We evaluated the ability of this model to perform disaggregation in an ultra-low frequency setting, over a data set of 251 English households. In this new setting, the IFNHMM outperforms the FHMM in terms of recovering the energy used by the component appliances, due to that stronger constraints have been imposed on the states of the hidden Markov chains. Interestingly, we find that the variability in model performance across households is significant, underscoring the importance of using larger scale data in the disaggregation problem.Comment: 5 pages, 1 figure, conference, The NIPS workshop on Machine Learning for Sustainability, Lake Tahoe, NV, USA, 201

    Energy Disaggregation for Real-Time Building Flexibility Detection

    Get PDF
    Energy is a limited resource which has to be managed wisely, taking into account both supply-demand matching and capacity constraints in the distribution grid. One aspect of the smart energy management at the building level is given by the problem of real-time detection of flexible demand available. In this paper we propose the use of energy disaggregation techniques to perform this task. Firstly, we investigate the use of existing classification methods to perform energy disaggregation. A comparison is performed between four classifiers, namely Naive Bayes, k-Nearest Neighbors, Support Vector Machine and AdaBoost. Secondly, we propose the use of Restricted Boltzmann Machine to automatically perform feature extraction. The extracted features are then used as inputs to the four classifiers and consequently shown to improve their accuracy. The efficiency of our approach is demonstrated on a real database consisting of detailed appliance-level measurements with high temporal resolution, which has been used for energy disaggregation in previous studies, namely the REDD. The results show robustness and good generalization capabilities to newly presented buildings with at least 96% accuracy.Comment: To appear in IEEE PES General Meeting, 2016, Boston, US

    Energy Disaggregation via Adaptive Filtering

    Full text link
    The energy disaggregation problem is recovering device level power consumption signals from the aggregate power consumption signal for a building. We show in this paper how the disaggregation problem can be reformulated as an adaptive filtering problem. This gives both a novel disaggregation algorithm and a better theoretical understanding for disaggregation. In particular, we show how the disaggregation problem can be solved online using a filter bank and discuss its optimality.Comment: Submitted to 51st Annual Allerton Conference on Communication, Control, and Computin

    Energy Disaggregation Using Elastic Matching Algorithms

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)In this article an energy disaggregation architecture using elastic matching algorithms is presented. The architecture uses a database of reference energy consumption signatures and compares them with incoming energy consumption frames using template matching. In contrast to machine learning-based approaches which require significant amount of data to train a model, elastic matching-based approaches do not have a model training process but perform recognition using template matching. Five different elastic matching algorithms were evaluated across different datasets and the experimental results showed that the minimum variance matching algorithm outperforms all other evaluated matching algorithms. The best performing minimum variance matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the baseline dynamic time warping algorithm.Peer reviewedFinal Published versio
    corecore