1,116 research outputs found

    Cross-layer framework and optimization for efficient use of the energy budget of IoT Nodes

    Full text link
    Both physical and MAC-layer need to be jointly optimized to maximize the autonomy of IoT devices. Therefore, a cross-layer design is imperative to effectively realize Low Power Wide Area networks (LPWANs). In the present paper, a cross-layer assessment framework including power modeling is proposed. Through this simulation framework, the energy consumption of IoT devices, currently deployed in LoRaWAN networks, is evaluated. We demonstrate that a cross-layer approach significantly improves energy efficiency and overall throughput. Two major contributions are made. First, an open-source LPWAN assessment framework has been conceived. It allows testing and evaluating hypotheses and schemes. Secondly, as a representative case, the LoRaWAN protocol is assessed. The findings indicate how a cross-layer approach can optimize LPWANs in terms of energy efficiency and throughput. For instance, it is shown that the use of larger payloads can reduce up to three times the energy consumption on quasi-static channels yet may bring an energy penalty under adverse dynamic conditions

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Slotted ALOHA Overlay on LoRaWAN: a Distributed Synchronization Approach

    Full text link
    LoRaWAN is one of the most promising standards for IoT applications. Nevertheless, the high density of end-devices expected for each gateway, the absence of an effective synchronization scheme between gateway and end-devices, challenge the scalability of these networks. In this article, we propose to regulate the communication of LoRaWAN networks using a Slotted-ALOHA (S-ALOHA) instead of the classic ALOHA approach used by LoRa. The implementation is an overlay on top of the standard LoRaWAN; thus no modification in pre-existing LoRaWAN firmware and libraries is necessary. Our method is based on a novel distributed synchronization service that is suitable for low-cost IoT end-nodes. S-ALOHA supported by our synchronization service significantly improves the performance of traditional LoRaWAN networks regarding packet loss rate and network throughput.Comment: 4 pages, 8 figure
    • …
    corecore