3,371 research outputs found

    HALLS: An Energy-Efficient Highly Adaptable Last Level STT-RAM Cache for Multicore Systems

    Get PDF
    Spin-Transfer Torque RAM (STT-RAM) is widely considered a promising alternative to SRAM in the memory hierarchy due to STT-RAM's non-volatility, low leakage power, high density, and fast read speed. The STT-RAM's small feature size is particularly desirable for the last-level cache (LLC), which typically consumes a large area of silicon die. However, long write latency and high write energy still remain challenges of implementing STT-RAMs in the CPU cache. An increasingly popular method for addressing this challenge involves trading off the non-volatility for reduced write speed and write energy by relaxing the STT-RAM's data retention time. However, in order to maximize energy saving potential, the cache configurations, including STT-RAM's retention time, must be dynamically adapted to executing applications' variable memory needs. In this paper, we propose a highly adaptable last level STT-RAM cache (HALLS) that allows the LLC configurations and retention time to be adapted to applications' runtime execution requirements. We also propose low-overhead runtime tuning algorithms to dynamically determine the best (lowest energy) cache configurations and retention times for executing applications. Compared to prior work, HALLS reduced the average energy consumption by 60.57% in a quad-core system, while introducing marginal latency overhead.Comment: To Appear on IEEE Transactions on Computers (TC

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Configurable memory systems for embedded many-core processors

    Get PDF
    The memory system of a modern embedded processor con- sumes a large fraction of total system energy. We explore a range of different configuration options and show that a reconfigurable design can make better use of the resources available to it than any fixed implementation, and provide large improvements in both performance and energy con- sumption. Reconfigurability becomes increasingly useful as resources become more constrained, so is particularly rele- vant in the embedded space. For an optimised architectural configuration, we show that a configurable cache system performs an average of 20% (maximum 70%) better than the best fixed implementation when two programs are competing for the same resources, and reduces cache miss rate by an average of 70% (maximum 90%). We then present a case study of AES encryption and decryption, and find that a custom memory configuration can almost double performance, with further benefits being achieved by specialising the task of each core when parallelising the program

    A low-power cache system for high-performance processors

    Get PDF
    制度:新 ; 報告番号:甲3439号 ; 学位の種類:博士(工学) ; 授与年月日:12-Sep-11 ; 早大学位記番号:新576
    corecore