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Abstract

In modern processors, a cache system becomes the main contributor of the total power consumption
as it greatly improves the performance. Most of the power consumption is caused by its complex
architecture, very frequent access and progressively increased size. This thesis presents three tech-
niques in a cache system in order to reduce both power consumption and access latency. We also
propose a novel recovery mechanism, which uses a special ‘cache’ to eliminate the performance
degradation due to our proposed optimization.

In Chapter 1, we first review the principle of cache and two popular cache architectures. Then,
we analyzed the cache access time and energy. Based on these theoretical foundations and anal-
ysis, we survey the current mainstream techniques on high-speed and low-power cache designs.
These techniques improve the performance or reduce the power consumption at many levels, such
as device level, circuit level, and so on. By referring to and developing the previous techniques, we
propose four approaches in next the chapters, considering both performance and power consumption
of cache.

In Chapter 2, we first propose a low-power Data Cache (D-Cache) design, called Adaptive
Various-width Data Cache (AVDC), which exploits the value locality to reduce the static power
consumption and dynamic power consumption of D-Cache. There is a common understanding such
as many values in a processor rarely need the full-bit dynamic range supported by a cache. The
narrow-width value occupies a large portion of the cache access and storage. From the view of this
observation, AVDC exploits the popularity of narrow-width values to reduce the power consumption
of D-Cache without performance degradation. The data storage unit in AVDC consists of three sub-
arrays to store data with different widths. When the high sub-arrays are not used, the modified
high-bit SRAM cells can be closed to save their dynamic and static power consumption. The main
advantages of AVDC are: 1) Both the dynamic and static power consumption can be reduced. 2)
Low power consumption is achieved by the modification of the data storage unit with less hardware
modification. 3) We exploit the redundancy of narrow-width values instead of compressed values,
thus cache access latency does not increase. Experimental results using SPEC 2000 benchmarks
show that our proposed AVDC can reduce the power consumption, by 34.83% for dynamic power
consumption and by 42.87% for static power consumption on average, compared with a traditional
D-Cache.

In Chapter 3, as the second technique, we present a new power-aware Instruction Fetch Unit
(IFU) architecture, named Analysis Before Starting an Access (ABSA), which aims at maximizing
the power efficiency of the low-power techniques on Instruction Cache (I-Cache) by eliminating
the restrictions on those low-power techniques in the traditional IFU. To achieve this goal, ABSA
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reorganizes the IFU pipeline and carefully assigns tasks for each stage so that sufficient time and
information can be provided for the low-power techniques to maximize the power efficiency be-
fore starting an access. The proposed design is fully scalable and the cost is low. Compared to
a conventional IFU designs, simulation results show that ABSA saves about 30.3% fetch power
consumption, on average. I-Cache employed by ABSA reduces both static and dynamic power con-
sumptions about 85.63% and 66.92%, respectively. Meanwhile the performance degradation is only
about 0.97%. However, an obvious problem of ABSA is the performance degradation because the
branch misprediction penalty is increased by lengthening the pipeline stages.

To address this problem, we further propose a new recovery mechanism, called Critical Re-
covery Trace Cache (CRTC) in Chapter 4. This proposed CRTC can reduce the penalty of branch
misprediction recovery that is amplified by our proposed ABSA approach. The mechanism employs
a critical path predictor to identify the branches that will be most harmful if mispredicted. Once the
branch is identified as critical, a set of successive decoded instructions following it are saved into a
small simplified trace cache. Then during subsequent prediction, the CRTC is accessed. If there is
a hit, the instructions from the alternative path can be fed to rename stage immediately after a mis-
prediction detected. Thus, the re-fill latency of fetch and decode stages are efficiently reduced. The
experimental results employing SPEC 2000 benchmark show that the proposed CRTC can improve
Instruction Per Cycle (IPC) value by 4.8% on average, compared with a conventional processor
without CRTC.

Finally, in Chapter 5, we introduce another advanced cache technique to reduce the power con-
sumption of a cache. So far, our proposed low-power techniques on a cache are based on a fixed
hardware configuration, which are not adaptable and depending on the program behaviors. We fur-
ther propose to employ the reconfigurable technique to save energy with little performance degra-
dation by dynamically adjusting the cache parameters for the code that is executing. However, the
existing reconfigurable cache explores and adapts the cache configuration based on a sequential
interval in time, which presents high efficiency only if the program can keep its execution phase
for a number of intervals. We propose a behavior-based adaptive cache, which can be dynamically
adjusted based on the behavior of a program. The design adds very little hardware complexity and
commits most workload to the software so that it is very effective for the embedded microprocessors
design. Simulation by using Spec 2000 shows that our proposed reconfigurable cache can reduce
the power consumption by up to 63% and 22% compared to a conventional set-associative cache and
an interval-based reconfigurable cache, respectively. At the same time, performance is improved by
4.8% and 0.76%, respectively.

In conclusion, we summarize this thesis that is studies of a cache system to achieve the high-
performance and low-power processors. We accomplish this purpose in four different ways. The
first method reduces power consumption and access latency of a cache by modifying the circuit of
SRAM array. The second method focuses on the optimization of a processor pipeline to remove
the restrictions on the low-power techniques of a traditional micro-architecture. The third way is
to directly use a small, special ’cache’ to not only reduce the branch misprediction penalty but also
the power consumption caused by refilling the pipeline after a misprediction. This mechanism is
the complement to the ABSA. In the last, we presents a new cache technique to reduce the power
consumption by dynamically adapting the cache configuration. The last way is adaptive to both
D-Cache and I-Cache. The experimental results show that the proposed approaches save the power
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consumption and reduce the access latency compared to the conventional cache design. The results
also show the proposed designs have excellent scalability.
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Chapter 1

Introduction

In this chapter, we first surveyed the principle of cache and two popular cache architectures. Then,

we analyzed the cache access time and energy. Based on these theoretical foundations, we have

surveyed the current mainstream techniques on high-speed and low-power cache designs. These

techniques improve the performance or reduce the power consumption from many levels, such as

device level, circuit level, and so on. By referring to and developing the previous techniques, we

proposed four approaches in next chapters, considering both performance and power consumption

of cache.

1.1 Background

Processor performance and DRAM capacity significantly increased with the development of VLSI

technologies. Recently, the frequency of the modern processors has been improved by 1 GH and 1

GB DRAM has also been achieved [1], [2], [3], [4]. However, the frequency of processors grows

rapidly in nearly a cycle of one and half a year which is well-known as Moore’s Law. The capacity

of memories also grows fast while the speed of memories improves relatively slow and can not keep

up with the speed of processors. The performance gap between processors and the memories will

continue to increase [5]. Moreover, current memory systems suffer from a lack of memory band-

width caused by I/O-pin bottleneck [6] [7]. The processor performance is limited when memories

become the biggest bottleneck of performance.

The performance bottleneck between the processors and memories drive us to search an ideal

memory system that has the infinite capacity and any memory access can be completed within

one processor clock cycle.Then, the performance gap between processors and memories will be

completely removed. However, the ideal memory system is impracticable in real memory design
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due to the limited on hardware resource, semiconductor technology, and so on. Memory hierarchy

scheme is a well known technique to make the real memory system close to the ideal one. A cache is

generally considered as the first level of the memory hierarchy encountered once the address leaves

the processor. Therefore, the real memory system can be considered as the ideal memory system if

almost all memory accesses are confined in the level-1 cache.

1.2 Principle of Cache

A cache memory, also called cache, is a portion of memory hierarchy made of high-speed static

RAM (SRAM) instead of the slower and cheaper dynamic RAM (DRAM) used for main mem-

ory. Cache is effective because most programs access the same data or instructions over and over.

By keeping as much of this information as possible in SRAM, the computer avoids accessing the

slower DRAM. A lot of researches have focused on improving cache performance, and many high-

performance cache architectures have been proposed. The most straightforward approach to im-

prove the cache performance is to increase its size. By increasing the cache size, the processor

performance is improved because a larger cache has higher cache-hit rates, resulting in the decrease

on main memory access. In terms of the power consumption, this approach are also useful because

the power consumed by the main memory always much higher than the power consumed by cache.

Meanwhile, the power spent on driving external I/O pins can be reduced. But in fact, performance

and power saving will not increase indefinitely because increasing cache size also increases the en-

ergy and delay dissipated in cache accesses. Meanwhile, the cache with a large size is very cost.

Thus, many research proposed various techniques to improve the cache performance and reduce the

power consumption. Especially, in recently years, several studies have been pointed out that power

dissipation has become one of the critical problems in future cache design. The power consumption

of on-chip caches for StrongARM SA110 occupies 43% of the total chip power [8]. In the Pen-

tium Pro processor, the IFU and the I-Cache contribute 14% to the total power consumed [9]. In

some cases, the memory hierarchy of a microprocessor can consume as much as 50% of the sys-

tem power [10] [11]. Thus optimizing the power consumption of a cache is particularly important.

Recent growing mobile-market strongly requires not only high performance but also low-energy

dissipation. One of uncompromising requirements of portable computing is energy efficiency, be-

cause that affects directly the battery life. Therefore, we believe that considering high-efficient

cache architectures is a worthwhile work for future high-performance low-power processors.

Research [12] indicated a rule for the behavior of program execution: a program executes about
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90% of its instructions in 10% of its code. We can understand from the rule that there are some por-

tions of program-address space executed frequently. Thus, the two principles of locality, temporal

locality and spatial locality, provide the theoretical foundation for high-performance or low-power

techniques on cache.

• Temporal locality: If a data location is referenced then it will tend to be referenced again

soon.

• Spatial locality: If a data location is referenced, data locations with nearby address will tend

to be referenced soon.

The principle of cache also depends on the locality of memory references. There are many levels

in a memory hierarchy.In general, cache is in the lowest level. The processor tries to obtain the

reference data from cache, because that upper memory access can be avoided.

1.3 Conventional Cache Architectures

Mainly, there are two kinds of cache architectures: a direct-mapped cache architecture and a set-

associative cache architecture. Figure 1.1 illustrates the conventional organization of a direct-

mapped a cache. The length of a memory address is 32 bits. A memory address is divided into

three parts: high-order bits, low-order bits and bytes offset. The low-order bits are used as an index

to access a unique entry of a cache. An entry of a cache contains a valid bit, a tag field and a data

field. The minimum unit of information that can be either present or not present in the cache is

called a block which is equivalent to an entry. The number of blocks in cache determines how many

low-order bits of memory address are used for indexing. The block size indicates the number of

bytes in data field of a block. The byte offset of memory address is used to access a particular byte

in a data field, so the block size determines the number of bits in byte offset. The high-order bits of

memory address are used for tagging and saved in a tag field of a block. As the length of memory

address is constant, the length of a tag field equals 32− log 2(Number of Blocks×Block Size).

A given address can appear in exactly one location in the cache shown in Figure 1.1, but each

cache location can contain a number of different memory locations. The comparison of tags is

needed to uniquely specify a memory location. A valid bit indicates whether a block contains a

valid address or not. If the valid bit is not set, there cannot be a match for this block. When an

address is brought into the cache, the low-order bits (i.e., index) are used to select a block and

the bytes offset are used to select a byte in the data field of the block. When a block is selected,
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Figure 1.1: Direct-mapped cache

the content in tag field has to be compared with the high-order bits of the address to ensure the

correctness. If the tag and high-order bits of the address are equal and the valid bit is set, the request

data is present in the cache and the data is supplied to the processor. The direct-mapped cache maps

each memory location to exactly one location in cache. An opposite extreme is a scheme that a block

can be placed in any entry in a cache, which is called a fully associative cache. The compromise

approach between direct mapped and fully associative is called set-associative.

The cache shown in Figure 1.2 is a 2-way set-associative cache. Apparently the n-way set-

associative cache is composed of n direct mapped caches so a block can be placed in one of four

direct mapped caches. When an address is brought to the 4-way set-associative cache, the four

direct mapped caches are accessed simultaneously and at most one tag comparison of four is equal.

No additional bit in memory address is used to specify in which way the block resides.

If the data requested by the processor appears in some block in the cache, this is called a hit.

If the data is not found in the cache, the request is called a miss. There are three types of caches

miss: 1) Compulsory miss caused by the first access to a block that has never been in the cache. It

occurs only when a program is firstly executed. 2) Capacity miss is because the cache can contain

all blocks needed to satisfy the request even with fully associativity. 3) Conflict miss, also called

collision miss, occurs when multiple blocks compete for the same set in the direct-mapped cache.

The number of misses plays an important role in energy consumption of a cache. When there is a

miss, the requested data have to be fetched from off-chip memory which consumes great energy per
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Figure 1.2: 2-way Set-associativity cache

access. An efficient way to reduce capacity miss and conflict miss is to enlarge the cache. However,

accessing a large cache consumes more energy than a small cache regardless of hit or miss.

1.4 Cache Access Time and Energy

Cache-miss rate is the important metric of cache performance. The Average Memory Access Time

(AMAT) is the average latency per memory reference [12], which is expressed by the following

equations:

AMAT = TimeperHit + CacheMissRate×MissPenalty (1.4.1)

In general, time per hit is divided into decoding delay, wordline to sense amplifier delay, and mux to

data out delay. Miss penalty is the latency for an access to the main memory. Figure 1.3 illustrates

the time access model. There are two critical path: data path and tag path. In general, the access

latency of tag path is larger than the access latency of data path in small cache size. Instead, for

a large cache size, the access latency of data path is larger than the access latency of tag path. In

addition,

The energy consumption in a cache can be attributed to threee major sources: the memory cell

array, the decoders (row, column, block) and the periphery. The Cache access energy (Ecache) can
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Figure 1.3: cache access delay path model

be approximated by the Eq. 1.4.2 [13]:

Ecache = Edecode + ESRAM array + Eperiphery (1.4.2)

where, Edecode is the average energy consumed for decoding the memory address, ESRAM array is

that consumed for accessing to the SRAM array (tag memory and data memory) per cache access,

and Eperiphery includes the energy consumed the for periphery circuit, such as driving external I/O

pins. In addition, with the continuous development of integration, the static power consumption of

cache cannot continue to be neglected. It approximately equals the product of supply voltage and

leakage current.

There are many levels where we can consider for improving the performance and energy dissi-

pation, such as device level, circuit level, architectural level, algorithm level, and so on. In the next

two sections, we will briefly survey some techniques on a cache for high-performance, low-power

processors.

1.5 High-speed Memory-access Techniques

There is a trade-off between the cache-access time and the cache hit rate (i.e., first access but low

hit rate of direct-mapped caches vs. slow access but high hit rate of set-associative caches). In this

thesis, From Eq. 1.4.1, it can be understood that there are two approaches to improve the cache

performance by reducing the average memory-access time as follows.
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• Reducing cache access time.

• Reducing cache miss rate.

Here, we introduce some commonly used techniques to satisfy the above requirements for high-

performance. Section 1.5.1 and 1.5.2 show techniques to improve the cache access time and the

cache hit rate, respectively.

1.5.1 Reducing Cache Access time

In general, the access time of a direct-mapped cache is faster than a set-associative cache. It is

because set-associative caches suffer from longer access time due to way selection. Since the way

selection needs to be performed after the tag-comparison results are available, the critical path

becomes long. There are several methods to accelerate the cache access time as fast as possible.

A simple approach to reduce the cache access time is to add a small L0 cache or buffer between

the L1 cache and processor. Once the added memory unit is hit, the cache does not operate. Thus,

the cache access time is cut down to the time to access the L0 cache or buffer that is shorter than L1

cache access time due to smaller memory size. An important trend in high access hardware design

is the partitioning of hardware components into smaller components. Partitioning technique was

first used in caches for improving performance in [17]. A large cache is broken down into as well

as the wiring and gate capacitances of word lines used to activate the memory cells. The reduced

capacitance helps the cache access time lower when accessing the caches. There are two way to

partition a cache. First partitioning way is to reduce the number of cells on a word line, and/or the

number of cells on a bit line. By dividing the word line into several sub-word-lines that enabled

only when addressed, the overall switched capacitance per access is reduced. This approach is quite

popular in SRAM memories. The other is to partition the bit line to reduce the capacitance switched

at every read/write operation, which is often used in DRAM memories [76].

1.5.2 Reducing Cache Miss Rate

Memory access behavior is different across the different application. Even if in the same appli-

cation, memory access behavior exhibit great difference among the different phases. However,

conventional caches expect that all memory references has the high degree of temporal and spatial

locality. Thus, conventional organization have hardware parameters fixed: cache size, associativity,

mapping function, replacement policy, cache-line size, and so on. Therefore, it is difficult for the

conventional caches to follow the various behavior of memory references. To improve cache-hit



8

rates, many researchers have proposed cache architectures which attempt to adapt dynamically or

statically the cache parameters to the varying memory-access behavior.

Researches [17] [18] [19] attempt to improve the cache hit rate by using two mapping functions.

The mapping functions determines that which set the data designated by a memory address should

be placed in. Thus, many data which compete in a set lead to a large number of conflict misses.

The mapping functions adaption scheme can effectively reduce the conflict misses. Further, many

researches attempt to tune different cache parameters to reduce the cache miss rate so that the

optimal cache configuration can achieve the power efficiency. Zhang et al. [78] propose a highly

configurable cache that dynamically adapt the associativity, cache size and line size with certain

restrict combinations. Lin and Duh proposed an on-ine reconfigurable cache, which not only reduce

the power consumption by searching a effective cache configuration, but also greatly reduces the

search time [20].

Other researchers suggest various cache architectures which consist of several memory modules

for improving cache-hit rates. The memory modules are used for different purposes in order to

follow the various behavior of memory references.

1. Keeping and filtering by attaching a high-associative cache: There are many approaches em-

ploying a small high-associative cache. The roles of the attached set-associative cache are

1) to keep frequently reused data at close to the level-1 cache instead of the next-level mem-

ory and 2) to filter rarely reused data which pollute the cache. If a data has rich temporal

locality, it should not be evicted from the cache. In contrast, a data having poor temporal

locality should not be loaded into the cache. The relevant papers have victim cache proposed

by Jouppi [22], bybrid-access caches proposed by Thelbald et al. [23], annex cache proposed

by John et al. [24] and the pollution control cache proposed by Walsh et al. [25], and so on.

2. Exploiting different types of locality: The spatial locality can be exploited by increasing

cache-line size. On the other hand, decreasing cache-line size is a good approach to exploit-

ing the temporal locality, because the total number of entries, or cache lines, in the cache is

increased. Unfortunately, conventional caches have a fixed cache-line size, so that it is impos-

sible to satisfy both the above mentioned requirements. The most straightforward approach

to solving the problem is to employ two types of caches: one has a small cache-line size

and the other has a large cache-line size. For example, Park [26] proposed the co-operative

cache which consists of the spatial-oriented cache (SOC) having a larger cache-line size and

the temporal-oriented cache (TOC) having a smaller cache line size. Another example is the
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split temporal/spatial cache proposed by Milutinovic et al. [27] which also has a spatial cache

having a usual cache-line size and a temporal cache having a small cache-line size.

1.5.3 Trace cache

So far, we have introduced many methods to improve cache-hit rates. However, improving the

cache-hit rates may not be able to produce an advantage for total system performance. When we

consider the total execution time of a program, the most important thing is to reduce the total

number of clock cycles required. From cache designs point of view, we need to consider the total

number of processor stalls caused by the real memory system. Recent processors exploit increased

instruction level parallelism (ILP), thereby achieving higher performance. In other words, lack of

ILP degrades the total processor performance. Trace cache [95] in a microprocessor that stores

dynamic instruction sequences after they have been fetched and executed in order to follow the

instructions at subsequent times without needing to return to the regular cache or the memory for

the same instruction sequence. An obvious advantage of the trace cache is that it increases the ILP

of fetch stage.

1.6 Low-power Memory-access Techniques

From Eq. 1.4.2, it can be understood that there are at least three approaches to reducing the average

memory access energy. Previous paper [28] reported that energy consumption of the address de-

coder is about three order of magnitude smaller than that of other components. And, the Eperiphery

is also smaller than ESRAM array. Therefore, in this thesis, we focus on the methods to reduce the

SRAM array energy (ESRAM array).

Energy dissipation in CMOS technology circuits is mainly due to charging and discharging

gates. While a cache access is performed, the following energy is dissipated:

ESRAM array = α× C × VDD
2 (1.6.1)

where, VDD is the supply voltage as well as the output voltage swing, C is the total switched load

capacitance on all cache components (bit-lines, word-lines, memory cells, and so on). α is a constant

depending on VLSI implementation. It can be understood from Eq. 1.6.1 that we can reduce the

energy dissipation by making a small value of C or VDD. Reducing the supply voltage has a great

impact on the energy dissipation, but makes access time longer [29] [30]. Therefore, it is not a

practical approach to reduce the power consumption.
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Thus, the power reduction techniques on cache mainly focus on reducing the switched load

capacitance (C). In Section 1.6.1, we introduce the techniques to reduce the cache-access energy

based on the structural and behavioral approaches, respectively. Then, although the static energy

is not included in Eq. 1.4.2, some techniques to reduce the static energy are discussed in Section

1.6.2.

1.6.1 Reducing Cache Access Power

To reduce cache access power without performance degradation, the total switched load capaci-

tance need to be reduced. An important trend in low-power hardware design is the partitioning of

hardware components into smaller and less energy-consuming components. The selective disabling

of unused components is an effective mechanism for reducing energy consumption. Partitioning

has been used in caches for both performance and energy considerations. A large cache is broken

down into smaller subarrays to reduce the wiring and diffusion capacitances of bit-lines as well as

the wiring and gate capacitances of word-lines used to activate the memory cells. The reduced ca-

pacitance helps lower the cache access time and dynamic energy consumption when accessing the

caches.

Power reduction techniques on cache memories are divided into two approaches: structural one

and behavioral one. The structural approach changes the cache organization (the cache is divided),

but the cache-access operation is not modified. While the behavioral approach attempts to optimize

the cache-access operation for low energy dissipation, but the cache organization is maintained

(caches have originally a multi-module organization).

Structural Approaches

1. Horizontal Partitioning

Horizontal partitioning is to partition the cache horizontally. In other words, the word-line is

horizontally partitioned. Research [32] proposed to partition the word-line into shorter sub-

word-line so that the capacitance of word-line is reduced. In conventional SRAM arrays, a

number of transfer gates are connected to a word-line. The word-line partitioning reduces

the total number of memory cells connected to the word-line. Cache subbanking [33],[34]

proposed a similar scheme for low-energy caches. Usually, a cache line includes multi words

for the exploitation of the spatial locality. In the traditional caches, the referenced data is

looked up in the corresponding cache line that is read from data memory. As a result, the

remaining data in the cache line are unused. In the cache subbanking, the data memory is
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partitioned into subarrays horizontally. Only the desired subarrays is activated. Region-Based

Caching proposed by Lee et al. [35] is another implementation of horizontal partitioning,

which exploits the different characteristics of data type by employing three different cache

modules: a small module for stack data, a small module for global data, and larger main

module for others. Compared with the conventional cache organization. Lee et al. reported

that about 70% of memory references hit the stack-cache or the global-cache.

2. Vertical Partitioning

Different from the word-line partitioning, bit-line partitioning is another low-power tech-

nique. Ghose et al. [36] evaluated the effects of the bit-line partitioning for the cache em-

ployed by superscalar processors. Adding a small buffer between L1 cache and processor can

greatly reduce the power consumption. This approach likes to vertically partition the conven-

tional L1 cache into two part: small L0 cache and large L1 cache. Only when the L0 cache is

missed, the L1 cache need to be access. Of course, the added memory maybe a small cache

or a buffer. Su et at. [33] and Kamble et al. [34] evaluated the energy efficiency of cache-line

buffering, or a single block buffering. Ghose et al. [36] proposed the multiple line buffer for

low-power superscalar processors. Kin et al. [37] proposed to use L0 cache that is called

filter cache. A level-1 cache access occurs only on a filter-cache miss. Kin et al. reported that

a filter cache reduces 51% of energy delay product across a set of multimedia and commu-

nication applications compared with a conventional cache organization. The effectiveness of

vertical partitioning depends largely on how much the cache accesses can be concentrated on

the small level-0 cache. Bellas et al. [38] proposed a dynamic cache management to allocate

the most frequently executed instruction blocks to the small level-0 cache that is also a cache

between processor and Level-1 cache. A branch prediction unit is exploited for detecting the

frequently executed blocks.

3. Horizontal and Vertical Partitioning

Ko et al. [39] proposed the MDM (Multi-Divided Module) cache architecture. The cache

is divided horizontally and vertically into small modules. Each small module includes own

peripheral circuits, so that it can operate as a stand-alone cache. Only a single small module

designated by the memory address is activated. When the MDM cache has M independently

selectable modules, the average load capacitance of which becomes almost 1/M compared

with a non-divided conventional organization.
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Behavioral Approaches

In conventional set-associative cache, all ways in set-associative caches are searched in parallel

because the cache-access time is critical. Thus, the energy consumed for a tag-subarray access and

that for a data-subarray access are consumed in each way. Since only one way has the data desired

by the processor on a cache hit, however, conventional set-associative caches waste a lot of energy.

Some techniques have been proposed for alleviating the negative effect of the set-associative caches

by optimizing cache-access behavior.

1. Way Prediction and phased-based access

The activated area in conventional set-associative caches includes all ways. However, all

way accesses but one are unnecessary. One of approaches to achieving energy reduction for

set-associative caches is to make the activated area close to a single way which includes the

desired data.

Hasegawa et al. proposed a phased cache in order to avoid the unnecessary data subarray

accesses [43]. In the phased cache, tag comparison and cache-line access are performed

sequentially. First, tag comparisons are performed without data-subarray activation. Then,

only a single data-subarray which includes the desired data is accessed if at most one tag

matches. Otherwise, a cache-line replacement is performed without any data-subarray access.

Although this approach reduces the energy consumed for data-subarray accesses (cache-line

accesses), the cache-access time will be increased due to the sequential flow. If we know

which way includes the desired data before starting the cache access (i.e., without perform-

ing the tag comparison), the unnecessary way-accesses can be eliminated without cache ac-

cess time overhead. Thus,the way-prediction techniques introduced can be used for reducing

cache-access energy [44],[45]. A correct way-prediction makes it possible to activate only

the desired way without using the tag-comparison results. The detail of the way-prediction

techniques for low-energy dissipation is explained in Chapter 3.

2. Omitting Tag Comparison

In the conventional caches, tag comparison is performed in every access to determine whether

the current access hits the cache. Panwar et al. [46] proposed a conditional tag-comparison

which attempts to reduce the total count of tag comparison required in the execution of pro-

grams. If two successive instructions i and j reside in the same cache-line, the tag comparison

for j can be omitted. Another approach to omitting the tag comparison is to exploit execution
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footprints. The condition for performing the tag comparison is determined based on the his-

tory of program execution [47]. The tag comparison for instruction j can be omitted, even if

instruction i and j are reside in different cache lines.

1.6.2 Reducing Static Energy

Cache consumes not only the dynamic energy caused by cache accesses but also static energy. The

static energy is not included in Equation 1.6.1. However, this energy consumption is also important

for low-energy memory systems. When not switching, CMOS transistors have, in the past, con-

sumed negligible amounts of power. However, as the speed of these devices has increased along

with density, so has their leakage (static) power consumption. We now estimate that it currently

accounts for about 15%-20% of the total power on chips implemented in high-speed processes.

Moreover, as processor technology moves below 0.1 micron, static power consumption is set to

increase exponentially, setting static power consumption on the path to dominating the total power

used by the CPU [56].

Various circuit techniques have been proposed to deal with the leakage problem. These tech-

niques either completely turn off circuits by creating a high-impedance path to ground (gating) or

trade off increased execution time for reduced static power consumption. In some cases, these tech-

niques can be implemented entirely at the circuit level without any changes to the architecture or

may involve only simple architectural modifications. The on-chip caches are one of the main can-

didates for leakage reduction since they contain a significant fraction of the processor’s transistors.

Many techniques have been proposed to reduce the static power consumption of caches, such as

Gated-VDD [58], MTCOMOS [59], and so on.

1.7 Conclusion

In this chapter, we first surveyed the Principle of cache and two popular cache architectures in sec-

tions 1.2 and 1.3, respectively. Then, we analyzed the cache access time and energy in section 1.4.

Based on these theoretical foundation, we have surveyed the techniques for high speed, low energy

cache in sections 1.5 and 1.6. From the previous works, we can see that speeding up cache access

time and reducing cache access energy can improve the overall processor performance and reducing

the total energy, respectively. Moreover, using a special cache also can improve the performance or

reduce the power consumption, for example trace cache.

In the next chapter, we focus on research on cache to achieve high-performance, low-power
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processor designs by four way: The first way is described in Chapter 2, which directly modify the

cache circuit to reduce the dynamic and static power consumption of data cache so that both overall

processor performance and total power saving are improved. The second way presented in Chapter

3 repipelines the instruction fetch unit, and removes the restrictions on the low-power techniques of

the instruction cache of the traditional IFU. The finial target is to maximize the power efficiency of

the low-power technique of cache to achieve low-power processor designs. The third one described

in Chapter 4 used a special cache, called Critical Recovery Trace Cache (CRTC), to resolve the

performance degradation due to using the above methods (i.e., lengthening pipeline leads to the

increase on the branch misprediction penalty). Finally, we propose a reconfigurable cache based on

program behaviors in chapter 5. All of the proposed approaches are the studies of cache, and the

purpose is to achieve high-performance and low-power processors.



Chapter 2

Adaptive Various-width Data Cache

2.1 Introduction

In recent years, power consumption has become a major constraint factor on the development of

integrated circuits, especially in microprocessors. The cache, as a critical component of the modern

processor, will constitute an increasingly larger portion of total microprocessor energy dissipation

due to large size, high speed, and frequent access. For example, the DEC Alpha21264 dissipates

14% [49] and the StrongARM 920T dissipates 19% [50] of its total power in caches. Thus, reduc-

ing the power consumption of cache is thought to be effective to reduce overall processor power

consumption.

The power consumption of integrated circuit is classified into dynamic power consumption and

static power consumption. The dynamic power consumption is consumed by the state transition

of transistor switch, which depends on the square of the supply voltage, and it is determined by

the switch frequency of the transistor if the operating condition is determined. The static power

consumption is caused by leakage current which appears even when no switching is taking place.

The static power consumption approximately equals the product of supply voltage and leakage

current, and it was very small under the early technology. As a result, numerous approaches have

been proposed to reduce the dynamic power consumption. For example, Block Buffering [67]

increases a smaller storage between a CPU and a cache, which is used to shoulder most of cache

access. In [36], another approach was proposed, where a cache is divided into several subbanking,

and only a subbanking of data where the block is accessed reduces the redundant energy dissipation.

Furthermore, a low-power reconfigurable data design based on locality and frequent value locality

was investigated. With a little modification to the conventional architecture, the reconfigurable

cache architecture could be reconfigured by itself with regard to a three-dimensional space, namely,

15
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cache capacity, line size and associativity to make compromise between performance and power

consumption [54].

Other research efforts actively pursued a Frequent Value (FV) based compression method (e.g.

FV Cache [55] [60]), which reduces the energy consumption by trading off between lower dynamic

energy consumption for frequent value accesses and higher access times for non-frequent value

accesses. FVs can be stored in the FV cache using a few bits after encoding instead of using full

words. The FV cache needs one cycle to read FV from the low-bit array. Then, the frequent

value is still decoded for the required word. The latency for decoding can be reduced by using

the subbanking scheme. For a non-frequent value, the required word need not be encoded. But,

accessing a non-frequent value needs two cycles where the low-bit array is accessed at the first

cycle, and the remained bit array is accessed at the second cycle.

In recent years, with the continuous development of integration, the threshold voltage becomes

lower and lower, so that the static power consumption accounts for a larger portion of total power

consumption [56]. So the static power reduction has been a significant problem, and many tech-

niques have been proposed. For example, Dual-Vt [57] adopts higher threshold voltage to reduce

leakage current on the premise of sacrificing the access speed; Gated-VDD [58] reduces leakage in

deep-submicron cache memories. Gated-VDD inserts an extra transistor between the voltage source

and the SRAM cell to selectively shut off some unused on-chip cache line, but it causes the loss of

stored information. MTCMOS [59] dynamically changes the threshold voltage to make some stor-

age cell in the dormancy state. But the dormancy storage cell maybe lose the stored information.

Accessing the dormancy storage cell needs to wake it up in advance, which increases the access

latency.

To overcome those drawbacks, the other solutions [51] [53] [68] have been proposed, which are

based on turning off portions of the cache at the cost of increasing miss rates. A more aggressive

approach proposed in [61], which is based on the FV cache [55] [60], allows shutting off the unused

bit in the larger sub-array and uses 1-cycle latency for non-FVs as well as for FVs. Since FVs are

stored in encoded form using only a few bits in the low-bit array, the remaining bits in the high-bit

array can be shut off. This approach reduces data cache static energy by over 33% on average.

Most of above-mentioned technologies optimize either the dynamic power consumption or static

power consumption. While the low static-power FV data caches [61] give consideration to both the

dynamic and static power consumption, it still has some problems, that is: 1) To reduce the power

consumption of the FV finder, the preceding studies [55] [60] [61] runs the FV finder for the first 5%

of memory accesses, but the partial runtime monitoring makes it difficult to select the appropriate
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FVs. 2) FV finder, FV encoder, and decoder register file cause additional power consumption. 3)

FV caches cannot be adapted to General Purpose Processor (GPP) because it is very difficult to

determine the monitoring time for finding an appropriate set of FVs.

In this section, we focus on the low-power techniques of Data cache (D-Cache). Although

we have introduced several low-power techniques on cache described in Chapter 2, not all these

techniques can work well in D-Cache. It is because that the temporal and spatial locality in D-Cache

is not prominent. Our work shows that another kind of locality, that we refer to as the value locality

that is also quite prevalent in programs and is very suitable for D-Cache. In fact, many values in

a processor rarely need the full-bit dynamic range supported by a cache. The narrow-width value

occupies a large portion of the cache access and storage. In view of this observation, we propose

an Adaptive Various-width Data Cache (AVDC) to reduce power consumption by exploiting value

locality with little performance overhead. In AVDC, the data storage unit consists of three sub-arrays

to store values of different data width. By checking the range of value, AVDC adaptively shuts off

unused sub-arrays for reducing power consumption. Meanwhile, AVDC would not increase access

latency. The proposed approach directly exploits the redundancy of values instead of using the

compressed data, so the data can be directly accessed without decoding. Experimental results using

SPEC 2000 benchmarks show that our proposed AVDC can reduce the power consumption, by

34.83% for dynamic power saving and by 42.87% for static power saving on average, compared

with a traditional cache.

The rest of the chapter is organized as follows. In the next section, research motivation are

described. In Section 2.3, we investigate the Various Width Value (VWV) that is the theoretical

basis for this paper. In Section 2.4, we describe the AVDC. In Section 2.5, we present experimental

results, and Section 2.6 concludes this chapter.

2.2 Motivation

Figure 2.1 shows a breakdown of the cache energy consumption for basic 32-bit data access in the

traditional cache [97]. The results showed that the energy consumption caused by the data bitlines

and sense amplifier accounts for a larger portion of total energy consumption for data accesses.

Most energy is dissipated in the bitlines and sense amplifier which are areas where we expect to

obtain power savings through shortening the wordline length (i.e., through preventing partial array

from accessing). And by using the Gate-VDD technique, another advantage to shortening the word-

line length is that the static power consumption is also reduced because the active SRAM array is
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Figure 2.1: Breakdown of energy consumption for 32-bit access in the traditional cache [97]

reduced.

In this chapter, we try to reduce the accessed SRAM array by exploiting Value locality. Value

locality has been the subject of extensive study in recent years, and a variety of different types of

value locality have been identified. The most widely studied form concerns the locality of values

generated by different dynamic instances of a static instruction. The work on value prediction [48]

exploits this locality to predict the outcome of a dynamic instance of a previously observed static

instruction. The work on instructions reuse exploits the same form of locality to reuse the result of

a previous dynamic instance of a static instruction.

The type of value locality that this chapter investigates and exploits is different. We are inter-

ested in the locality of the value in memory references. This kind of value locality, called narrow-

width value, has very recently been exploited for a value-centric data cache [60]. We propose to

exploit this form of value locality to reduce the storage requirements for the values in a data cache.

2.3 Various-Width Value

A narrow-width value is defined as the value with a smaller width than the full-width of the dynamic

range supported by typical 32 bits or 64 bits processors. The presence of narrow-width values has

been well studied and exploited for performance and power optimizations in [69] [70]. We focus
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Figure 2.2: Bit Width Distribution

on exploiting narrow-width values to reduce power consumption of a data cache. Almost all of

the modern processors use 32bit or 64bit data width, but they often deal with a large number of

narrow-width data because a lot of small variables (e.g. loops, array suffixes etc., ) are widely used

in a program. There is similar situation in cache, too. According to the previous research [64] based

on 64-bits data-width, on average, about 40% of all values can be represented using just 16-bits,

another 45% of the values using 32-bits. Only about 15% of the values require full-width bits.

To investigate the case for 32-bits data-width, we experimented with a 32-bit RISC architecture.

First of all, we analyzed all values in the data cache by executing the SPEC 2000 benchmarks and

obtained the width distribution as shown in Figure 2.2 on average, about 52% of all values have

data-width of 8 bits or less, and about 82% values have data width of 16 bits or less. Furthermore,

the values less than or equal to 4bit constitute about 43% of all. Similar results are also reported

in previous researches, in which the processors use wider data sizes (64-bit processors and beyond)

[64].

Based on above observation, we carry out a non-uniform quantization for all of the values in

the range of 0 to 231. The values are classified into three patterns as Short-Width Value (SWV) if

its data-width is 4 bits or less, Medium-Width Value (MWV) for 5-16 bits, or Long-Width Value

(LWV) for larger than 16 bits. SWV, MWV and LWV are called Various-Width Value (VWV)
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Figure 2.3: Distribution of VWV Compared with Frequent Value

together. We also analyzed the VWV patterns in the data cache by executing the SPEC 2000 bench-

marks, and compared with the FVs according to the number of the selected FVs in the data cache

as shown in Figure 2.3 (In section 2.5, the experimental environment is described in detail). The re-

sults show that on the average about 43% values are SWV and 82% values are SWV+MWV (called

as SM-WV). It is noted that the SWV occupies significant proportion, that is, small values are fre-

quently used in the benchmarks (especially for 0 and 1). Figure 2.3 also shows the distribution of

different grade VWV compared with FV-32 and FV-64 that mean the number of the selected FVs are

32 and 64, respectively. The results show that the distribution of SWV is similar to FV-32, and the

most contribution of SM-WV of benchmark is larger than FV-64. SWV and SM-WV present very

large proportion in the data cache according to these experimented results,. Therefore, by storing

the SWV or SM-WV in our proposed AVDC, the power consumption can be effectively reduced by

shutting off unused higher bits.

2.4 Design of AVDC

This section introduces how the AVDC can reduce cache power consumption by modifying the

SRAM architecture, and discusses the influence of this scheme to access delay and cache size.
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Figure 2.4: Modified Data Array for AVDC (a) AVDC Architecture (b) AVDC Line Architecture of
One Word

2.4.1 AVDC Architecture

In AVDC, a data word is comprised of three sub-arrays and an additional 2 bits flag-bit. The three

sub-arrays are 4-bits Low-Bit Array (LBA), 12-bits Medium-Bit Array (MBA) and 16-bits High-Bit

Array (HBA). Figure 2.4 (a) shows the AVDC architecture. The contents of the flag-bit and output

of the index driver are the two inputs of the AND gate, as shown in Figure 2.4 (b). The flag-bit is

composed of flag1 and flag2. If the flag is 0, the corresponding sub-array is shut off. Otherwise

the sub-array is normally accessed. Figure 2.5 illustrates the overall architecture. We add a VWV

Patterns Detector (VWVP-D) to capture VWV patterns, and decide whether the corresponding flag-

bit needs to be set or reset. The VWVP-D is a very simple OR logic, so Figure 2.5 does not give a

specific circuit. For the value of width D (D = 32), the logic expression of flag-bit is as follows:
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Figure 2.5: Architectural Design Overview

Flag1 = OR(D4 : D31) (2.4.1)

Flag2 = OR(D16 : D31) (2.4.2)

Different with the reading operation of FVs cache, when reading a word from AVDC, the value

stored in AVDC is not compressed data, so AVDC need not decode time. Thus, the whole 32 bit

would be read out without access latency. If the value is LWV, all of the output 32 bits come from

storage unit of word line. If the value is SWV or SM-WV, the used sub-arrays are normally accessed,

and the unused bits can automatically export 0 through the modified sense amplifier (described in

section 2.4.3). The unused SRAM cell of an data array and sense amplifier are turned off, so the

access to the unused bits are avoided, and the cache activity is reduced, too.

A write operation to AVDC is performed as follows: after the word to be written is identified by

the VWVP-D, the value can be stored in LBA if the value is less than 24, or stored in LBA+MBA

if the value is between 24 and 216-1, and the corresponding flag-bit is reset. In these two case,

accessing to the unused array is avoided. Otherwise, the value is LWV, and all of LBA, MBA and
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Figure 2.6: SRAM cell Modification. (a) Conventional SRAM cell and (b) Modified high-bit SRAM
cells for AVDC

HBA are accessed as well as the flag-bit being closed. For a cache write access, write data is usually

held in a pipeline buffer for a cycle while the cache tags are checked. The VWVP-D can occur

while the write data is waiting in the buffer and hence we expect no visible delay penalty.

2.4.2 SRAM Cell and its Modification

Here, we need to modify the SRAM cell except LBA. The architecture of flag-bits SRAM cell has

been explained in [61]. The flag-bit of AVDC adopts the standard 6T SRAM storage cell. Once the

value is written into the bit, it must be kept until the next value is written. When the flag-bit is 1,

the SRAM cells are normally used. When the flag bit is 0, the corresponding SRAM cell is shut

off. Figure 2.6 shows the conventional SRAM cell and the modified SRAM cell. The modification

consists of two ways: 1) using a Gated-Vdd technique [58] controls the cell to open or close. As extra
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Figure 2.7: Sense amplifier modification. (a) Conventional sense amplifier and (b) Modified sense
amplifier of high-bit cell

pMOS transistor is integrated into the conventional SRAM cell. When the ”Gated-Vdd Control”

goes high, the SRAM cell’s voltage is floated, turning off the entire cell. 2) A sub-wordline is added

to control SRAM cell. The state of sub-wordline is decided by wordline and high-bit control signal

that is corresponding flag-bit through the NAND gate (G1). The state of sub-wordline keeps the

same with the wordline under normal situation. However, the state of sub-wordline will always

remain inactive when the control signal is low.
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2.4.3 Sense Amplifier and its Modification

Using AVDC, the discharge operation of row line will not happen when the closed cell is accessed.

It makes column line not produce obvious voltage difference. Figure 2.7 shows the traditional sense

amplifier and the modified sense amplifier for AVDC. A traditional sense amplifier will introduce

competition and jitter under such a situation. This will not only make the output state unpredictable,

but also cause a large amount of waste of the power consumption. So we modify the sense amplifier

of high-bit cells to solve this problem. Similar to SRAM cell modification, a sub-sense is used to

decide whether the high-bit cell works. The sub-sense comes from the output of G2. In addition,

NAND gate (G4) replaces an original NOT gate (G3), so sense amplifier does not work in cases

where the flag-bit is 0. Modified sense amplifier will automatically stop work, and enforce the

output to 0 to ensure the integrity of the output data when the high-bit cell is shut off. For the LWV,

the modification does not affect the normal work of high-bit sense amplifier.

2.4.4 Assessment of Size and Delay

AVDC modifies only the high SRAM cells that belong to MBA or HBA, and the SRAM cell in LBA

is not changed. In Fig. 2.5, replacing an inverter into a NAND gate G1 could increase the wordline’s

driving delay, because a NAND gate contains more transistors than an inverter. According to [61],

delay is increased about 2% under the same transistor size, and this increment can be avoided if the

NAND gate transistor’s size is tripled without representing a significant overall area increase. It is

similar for sense amplifier. So the modified circuit can maintain the same cache access delay as the

original, and the same analysis is applied to G4.

We consider read and write delay overhead of AVDC, separately. For each write access, AVDC

cannot generate the visible delay penalty because the VWV pattern detection is carried out before

the cache access, since the value to be written is known in early stages such as decode stage, which

is same as write operation of FV cache [55] [61]. For reads, similar to non-delayed FV Cache

design (1-cycle FVC) [61], AVDC also uses 1-cycle latency for non-FVs as well as FVs by the flag

bit gating the open/close of the high-bit array. Thus, the flag-bit is read out in parallel with all the

data bits. Note that the high-bit data bits have no output if the corresponding flag-bit is reset, since

its SRAM cell and sense amplifier do not work. So a NAND gate is necessary to reconstruct zeros

when the flag-bit is reset, which may cause a little delay to read cycle because of its more transistors

than the traditional output driver (shown in Figure 2.6). But, the delay can be avoided as mentioned

above, so there is no visible delay penalty for each read access.

Using the Gated-VDD technique affects little on circuit size. Each pair of bit lines only allocates
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Table 2.1: Simulation Processor Configuration.
parameters value
Fetch/Decode/Issue/Commit 4 Instructions Width
Branch Direction Predictor 16K-entry Gshare
Branch Target Buffer 512-Entry, 2-Way
LSQ Size 32
Instruction Fetch Queue Size 32
Functional Units 4 Int ALU, 2 Int mult/div, FP ALU, 2

FP mult/div, 2 MEMPORT
Branch Misprediction Penalty 6 cycles
Instruction L1 Cache 16KB, 32Byte Blocks, Direct

Mapped, Latency: 1 cycle
Data L1 Caches 16KB, 32Byte Blocks, 4-way

Mapped, Latency: 1 cycle
UL2 Cache 256MKBs, 64Byte Blocks, 4-way

Mapped, Latency: 6 cycle
Memory Ideal size, Latency: 100 cycle

one sense amplifier, so this size increment can be ignored. The size increment is mainly from the

flag-bit. Each word (32 bits) adds two bits flag-bit, and the size increases 1/16. Because the number

of corresponding control circuit gates is as the same as the number of flag-bit, the overall increase

of storage in size is 1/8 = 12.5%. We compared the size before and after circuit modification

(evaluation size is 16kB with about 60% the storage body) by CACTI3.0 [62]. The result shows that

the overall increasing of size is 7.5% compared with the conventional cache, and 3.75% compared

with FVs cache.

2.5 Experiments

2.5.1 Simulation Environment

To evaluate the power and performance in 70nm CMOS technology, we employ the HotLeakage 1.0

power/performance simulator [65], which is built upon Wattch 1.02 power/performance simulator

[66], and has circuit-level accuracy for modeling the leakage current of cache- like structures. The

Wattch simulator is built on the Simplescalar 3.0 simulation tool set [63] and integrates the CACTI

timing, power and area models [62]. The baseline configuration we use is listed in Table 2.1. We

compared the proposed AVDC with FV cache proposed by Zhang’s [61] and the traditional cache.

L1 Data Cache (L1DC) is analyzed.
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Table 2.2: Benchmark Program

2.5.2 Benchmark

Twelve SPEC CPU2000 benchmarks [128] were employed (include the six SPECint and the six

SPECfp benchmark). All SPEC applications use the reference inputs. In order to verify the perfor-

mance, all of the benchmarks are wholly completed, and it is ensured that the number of instructions

of each benchmark is more than one hundred million. We compiled the SPEC CPU2000 bench-

marks for the Alpha 21264/Unix using gcc-2.7.2 compiler and link. The statistical information of

benchmarks is shown in Table 2.2.

2.5.3 AVDC Granularity

While a recommended architecture of AVDC has been described in section 2.3, the AVDC can also

be designed with different granularity of line architecture. In other words, there are many con-

figurations of dividing cache array. For example, 16-bit granularity means that the cache array is

divided into two sub-arrays with each sub-array being 16 bits. We conducted a study to see how var-

ious granularities achieve ideal results. Figure 2.8 shows the reduction in total power consumption

for various granularities. Three uniform granularities are used to compare with our proposed non-

uniform granularity, where 16-bit, 8-bit and 4-bit granularity means that the data array is divided

into 2*16-bit, 4*8-bit and 8*4-bit, respectively. We show results for three uniform granularities (16-

bit, 8-bit and 4-bit granularity) and our proposed non-uniform granularity, where all of the results

includes the power consumption of the additional flag-bit. We see that the 8-bit granularities gives
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Figure 2.8: Power saving for accesses when applying various sized bit fields

the greatest power savings overall in all of the uniform granularities. Usually, a large granularity

decreases AVDC efficiency than a small granularity because a large granularity decreases bit-width

that can be shut off when storing a small value. For example, storing a very small value (i.e. 0 or

1), AVDC can not shut off the SRAM cells from the second bit to the 15th bit at the 16-bit granu-

larity, but can not shut off the SRAM cells from the second bit to the 7th bit at the 8-bit granularity.

In addition, excessive“narrow” granularity is also fatal because each sub-array except the lowest

sub-array needs one bit flag-bit to control the open or close the SRAM cell. The additional flag-bit

not only produces the power consumption but also increases the complexity and size of cache. For

example, a 4-bit granularity would almost double the area overhead.

The further experimental results show the uniform granularity is not good because of the value

locality. A good engineering compromise is to balance between granularity and value locality by a

more effective approach where line architecture is grouped into non-uniform granularity to achieve

a high value coverage rate without sacrificing efficiency of AVDC. As described in section 2.3, the

values that only need one fourth of word and half of word occupy about 82% of all values. Thus,

two upper granularities should be merged to reduce the size and to increase the efficiency of AVDC.

Meanwhile, we discovered that values less than 4 bits occupy the lager proportion in the range of

values less than 8 bits. Figure 2.9 shows that Value Access Coverage (VAC) rate and Value Storage

Coverage (VSC) rate increase following with bit-width in the L1 Date Cache, where the results are
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Figure 2.9: Data width contribution to VAC and VSC

the average value of all the benchmarks. It is obvious that two curves are approximate, where data

width increases after certain degree, the coverage rate enhancement became slow. It is because that

VAC and VSC already achieve a high coverage rate when the data width is small. The results show

that VAC and VSC is equal to 42.21% and 40.35% respectively when the data width is equal to 4.

So the first granularity is 4 bits instead of 8 bits to achieve higher efficiency. Figure 2.9 also shows

that the power saving of non-uniform granularity is better than other uniform granularity. Therefore,

the architecture of AVDC that is divided into three sub-array (the values less than 4 bits stored in

LBA about occupy 40%, the value less than 16bits stored in LBA+MBA also about occupy 80%,

using all of the arrays is only less than 20%) is feasible.

2.5.4 Power Saving

We discuss the power saving from two respects, dynamic power consumption and static power

consumption.

Dynamic Power Saving

In the AVDC design, the energy consumption can be separated into two major components. First,

there is a fixed cost that all accesses must incur regardless of value patterns, caused by the peripheral

circuitry such as decoder, tag bitlines and data pattern detection. The second component arises in
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computing the data array energy due to the wordline length and number of bitlines driven such as

data bitlines and sense amplifier, which vary according to the value pattern in AVDC. It is well

known that the second component is the biggest power consumption contributor in AVDC like as

that in the traditional cache. Most energy is dissipated in the bitlines which are areas where we

expect to obtain power savings through preventing high-bit array of the SM-WV from accessing.

The most major dynamic power consumption that arises due to the bitlines and sense amplifier

is a function of the wordline length. Thus, the dynamic power consumption can be reduced be-

cause AVDC can prevent high-bit arrays of SM-WV from accessing. Contrarily, the dynamic power

consumption is increased due to the extra two bits of the flag-bit when LWV is accessed. On the

other words, AVDC represents tradeoff between lower dynamic energy consumption for SM-WV

accesses and higher dynamic energy consumption for LWV accesses. The tradeoff depends on the

access coverage of each value pattern and the energy consumption of each value pattern. In the

section 2.3, we have presents the SM-WV occupies a large proportion of data access. Here, we

obtained the energy consumption of AVDC from HSpice simulations from extracted layout. Table

2.3 shows the energy consumption for basic wordline (32 bits) and each value patterns in AVDC.

Comparing with the basic wordline, reading a SWV and a MWV can obviously reduce the energy

consumption about 46% and 17%, respectively. Writing a SWV and MWV can reduce the energy

consumption about 64% and 34%. But the energy consumption increase about 6.2% for reading

a LWV and 4.4% for wring a LWV. Both results (access coverage and the energy consumption of

each value pattern) show that the energy reduction due to accessing SM-WV is much larger than the

energy increment due to accessing LWV.

Furthermore, the increment in power consumption arises due to VWVP-D that must be carried

out during write operations. Data patterns must be detected every write access since the information

of the data is not known a prior. Fortunately, the power consumption for VWV pattern detection is

small because of its simple logic. In fact, the VWVP-D circuit gives an overall power consumption

of under 7% on average, comparing the results of Figure 2.10 and Figure 2.11. Summarizing, the

power saving due to reducing the wordline length is much large, and power increment due to the

Table 2.3: Energy Consumption (pJ) for each value pattern in the AVDC design

Operation Basic Wordline LWV MWV SWV
Read 45.6 48.43 37.83 24.64
Write 107.6 112.33 71.5 39.26
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Figure 2.10: Dynamic Power saving

flag-bit logics and the VWVP-D is neglected.

We employ CACTI 3.0 [62] to measure the cache power consumption, and implement AVDC

model on CACTI. The variables Ndwl and Ntwl used in CACTI are set to 1 because our scheme

does not support the column line to cut apart. FV cache proposed by Zhang [13] is well done in low

dynamic-power and low static-power. So we also modified CACTI 3.0 to incorporate a model of the

FV cache design to compare with AVDC. To simplify comparison and modeling, the FV finder and

the encoder were simulated with the SRAM register file. The power consumption of CAM memory

cells and corresponding combinational logic overhead are excluded from FV cache. Meanwhile, the

power consumption of the VWVP-D is also excluded from the AVDC for fair comparison.

Figure 2.10 shows the power saving of AVDC and FV-32 cache. The power saving rate of

some benchmarks with high access coverage like parser, vpr, and art is more than 45%. However,

for benchmarks with low access coverage, the power saving rate is also near 15%. Thus, the power

saving becomes larger following the value coverage increment. Fig. 9 illustrates that AVDC reduced

the dynamic power consumption by 34.83% of the data cache, and Zhang’s FV-32 cache reduced

27.08% on average. The main reason of the above results is that the access coverage of the AVDC

is higher than that of Zhang’s FV-32 cache.

Finally, the overall power consumption is also simulated. Figure 2.11 presents the overall power
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Figure 2.11: Total power saving compared with the traditional data cache

saving of the AVDC. The power consumption compared with the traditional data cache reduces

about 28.2%, on average. Although the power reduction is less than the results shown in Figure

2.10 (under 7%, on average) because of the VWVP-D circuit costs per writing access, the proposed

AVDC still outperforms the traditional cache and the FV cache.

Static Power Saving

AVDC can reduce the static power consumption. As mentioned in section 2.4, the overall static

power consumption saving depends on the coverage of VWV pattern in data cache. Through Figure

2.1, we found that there is abundant VWV in the L1 data cache for SPEC 2000 benchmark. On

average, 82% of the total values are the SM-WV, the highest is 98% for benchmark ‘parser’ and

the lowest 67% for benchmark ‘galgel’. The static power saving is proportional to the number of

bit-width that can be shut off. The calculation formula of the percentage of shutoff unit (σ) is given

by Eq. 2.5.1:

σ = SWV %× 28/34

+ MWV %× 16/34 (2.5.1)

Eq. 2.5.1 shows the value that is SWV can turn off 28bit unused high-bit cell, the value that
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is SM-WV can turn off 16bit unused high-bit cell. We also need 2 bits flag-bit per 32bit word. So

the result of above formula equals 53.76%. Gated-Vdd technique using pMOS can reduce the static

power consumption to 86%, so the static power saving using AVDC are 46.23% (53.76%× 86%)

on average. Comparing with the conventional 32-bit per word cache, the static power saving can

be calculated as 100%-(100%-46.23%)× 34/32 = 42.87 %. The static power reduction by Zhang’s

FV-32 cache is about 33%. So the proposed AVDC can reduce the static power more than FV cache.

2.6 Conclusion

We proposed the Adaptive Various-width Data Cache for reducing the power consumption of a data

cache memory, which is predicated on the observation that many cached values are narrow-width

values. AVDC can reduce both the dynamic and static power consumption without increasing cache

access. Different from the traditional FV cache technique, our approach is applicable not only to

specific instruction set processor but also to general purpose processor, because it does not need

to find the frequent value dedicated for each program, and the narrow-width value are frequently

used in a program. Therefore, ADVC can access in one cycle for all values. Experimental results

show that AVDC achieved 34.83% dynamic power reduction and 42.87% static power reduction on

average compared with the cache without AVDC, each improved by 7.75% and 9.87% compared

with the FV cache respectively. Furthermore, AVDC adds only two bits based on the conventional

cache and one bits more than FV cache, so area increment is very little.
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Chapter 3

Analysis Before Starting an Access

3.1 Introduction

Power efficiency is important to modern microprocessor applications (e.g. notebook computers,

consumer electronics and cellular phones). They require not only high performance, but also low

power consumption for longer battery life. Another driving force behind designing for power ef-

ficiency is that power consumption is becoming the limiting factor in integrating more transistors

on a single processor or on a multi-processor module due to the cooling, packaging and reliability

problems. Especially, I-Cache as the important component of IFU usually dissipates a considerable

portion of power in modern processors. For example, the on-chip caches of the 211164 DEC Alpha

chip dissipate 25% of the total power of the processor [71]. The Strong ARM SA-110 processor

from DEC, which targets specifically low-power applications, dissipates about 27% of the power in

I-Cache [50]. In the Pentium Pro processor, the IFU and the I-Cache contribute 14% to the total

power consumed [73]. Thus optimizing the power consumption of I-Cache is particularly important.

Up to now, many low-power techniques on I-Cache have been proposed to achieve a power-

efficient IFU. In general, these techniques save power by analyzing the fetch address to avoid some

unnecessary accesses such as accessing only the predicted cache way instead of all of the way.

However, in the traditional IFU, I-cache needs to be immediately accessed once the fetch address

is available. This leads to the limited work which can be done by the power-saving techniques

after fetch address generation and before starting an access. Therefore, the existing low-power

techniques usually lose possibility of maximizing power efficiency, or make it necessary to increase

the access delay and design complexity. This problem stimulates us to seek a better power-efficient

IFU architecture.

In this chapter, a new power-efficient IFU architecture, Analysis Before Starting an Access

35
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(ABSA), is proposed to maximize the efficiency of the low-power design, especially for I-Cache.

In ABSA, before starting an cache access, a separate stage is introduced to get useful information

(i.e., way or subbank information) for the low-power strategies by analyzing the fetch address or

other resources such as Branch Target Buffer (BTB). Then, utilizing the analysis results, the supply

voltage of the required I-Cache line is awakened in the subsequent pipeline stage. At last, the

instructions are fetched in the last stage of IFU. As a result, the power consumption of I-Cache

can be reduced more effectively by performing more careful strategy before starting an access.

Furthermore, ABSA provides a good low-power design space not only for I-Cache but also for other

power consumers of IFU (e.g., branch prediction). Our proposed ABSA can maximize the power

efficiency of the low-power design in IFU by providing sufficient time and information without

significant performance overhead and design complexity.

The remainder of this chapter is organized as follows. Section 3.2 discusses the related works

and analyzes traditional IFU architectures. Next, the ABSA design is presented in Section 3.3.

We describe the ABSA-based low-power implementation in Section 3.4. The performance and

scalability of ABSA is discussed in Section 3.5. We show the experimental results in Section 3.6.

In Section 3.7, we conclude this chapter.

3.2 Related Works

Several researchers have worked on reducing power consumption of the cache. Filter cache [37],

L-Cache [75], block buffer [33] and multiple line buffers [36] employ a small storage unit between

the processor and the level one cache to avoid unnecessary cache lookups. Cache subbanking was

proposed by Su [67] to reduce power consumption in caches by fetching only the requested subline,

rather than the entire logical cache line. Further study by Ghose and Kamble [36] divides the data

array not only vertically but also horizontally into several segments of bitcells to get more power sav-

ings. In this technique, greater power reductions are achieved with less precharge drivers and sense

amplifiers. Way-prediction [80] is proposed to reduce the power consumption of the set-associative

cache, which saves power by first accessing only the predicted cache way. It accesses other ways

only when the prediction is incorrect. This approach highly depends on the way-prediction accuracy,

and causes indefinite cache hit time. A better approach is the two-level filter scheme [81], which

accesses a block buffer and sentry-tag arrays ahead of cache data. The block buffer eliminates the

unnecessary cache accesses, and the sentry-tag further filters out the unnecessary way activities in

case of the block buffer miss. It reduces the total cache power consumption of the 32KB two-way
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set-associative I-Cache by about 56.79%.

Other techniques focus on leakage power consumption (e.g. drowsy caches [82], cache decay

[68], Gated-VDD[48]). Especially, Drowsy I-Cache [83], a representative state-preserving tech-

nique, employs dynamic voltage scaling (DVS) circuit technique and subbank prediction scheme

to selectively wake up one I-Cache subbank and keep other in the low-voltage mode. It reduces

leakage power consumption in I-Cache by about 75%.

Although these techniques can reduce power consumption of I-Cache, we find that their effi-

ciencies are still restricted by the traditional IFU architectures. In general, before starting an ac-

cess, those techniques in traditional IFU architectures usually require some extra time or complex

hardware support to identify and eliminate unnecessary accesses. Two basic IFU architectures are

widely used in modern processor design: one is the branch predictor is accessed after I-Cache [86],

which results in a one-cycle branch delay (e.g. Alpha21164 [92], Intel i960 [93]). Another, such as

ultraSPARC-III [89], is proposed to access branch predictor in parallel with I-Cache to reduce the

branch delay. And, most current advanced processor cores, such as IBM Power 6 [90] and Pentuim

4 [73], basically follow this IFU architecture design. A common characteristic of both traditional

IFU architectures is that the fetch address needs to be sent to the I-Cache as soon as it is generated.

Therefore, spare time and information to eliminate the unnecessary access are quite limited. For

example, Drowsy I-Cache with the horizontally configuration accesses the subbanks in all cache

way due to lack of cache way selection. To reduce the access delay, the two-level filter cache must

accesses the row decoder of each way while accessing the L1 and L2 filter.

Due to such restrictions of the low-power designs in the traditional IFU are prevented from

maximizing power efficiency. Thus, to use more time and information to identify and eliminate

unnecessary accesses, the traditional processors cannot but increase the access delay or reduce the

core frequency or increase the design complexity. To achieve a better tradeoff between performance

and power, a new IFU architecture that is more suitable for another smart low-power approach is

indispensable.

3.3 ABSA Design

Based on the observations on the traditional IFU architectures and the previous low-power ap-

proaches, we propose a new power-efficient IFU where the low-power techniques reduce the power

dissipation more effectively. Our design methodology is based on the following major principles:



38

1. The primary aim of our work is to effectively reduce power consumption on IFU at the cost

of minimal performance overhead. Our proposed IFU with the deeper pipeline technique

reorganizes the pipeline depth of IFU and carefully assigns the tasks for each stage, which

makes ensure that the frequency and bandwidth can not be reduced. Meanwhile, the deeply

pipelined IFU can provides sufficient time and information for the low-power strategies to

maximize the power efficiency. However, this approach incurs larger branch misprediction

penalties. In Section 3.5.1, two approaches are discussed to alleviate the branch misprediction

penalties in our design.

2. The low-power strategies used in our paper must be carefully selected. The prediction-based

low-power strategies, such as the way-prediction techniques, are not suitable for our pur-

pose. It is because the performance, access delay and power consumption depend on their

prediction accuracy. Our proposed IFU should be capable of providing the sufficient time

and information for the low-power techniques, so that analysis-based approaches are used to

save more power due to more accurate access because they can avoid unnecessary access by

analyzing the fetch address or other information before starting an access

3. The scalability is also an expected target for our proposed IFU design. Our design can still

maintain power efficiency even if the fetch bandwidth and core frequency increase. Moreover,

the power-efficient IFU is designed not only for I-Cache, but also for other power consump-

tion contributors of IFU.

3.3.1 ABSA Architecture

According to the above design methodology, ABSA is composed of the basic four stages as shown

in Figure 3.1. Like as other general processors, in the first stage (s0), the fetch address is calculated

either by incrementing the previous address or by selecting a new address in response to a predicted

or actual flow change operation. An individual stage, named Analysis stage (s1), is added prior

to the I-Cache access, which provides useful information for the low-power techniques to filter

unnecessary I-Cache access. Moreover, this stage can also generate the control information (e.g.

way selection and subbank selection) by analyzing the fetch address for the subsequent I-Cache

access when I-Cache access cannot be avoided. Then, instruction fetch process can implement a

more accurate selection to maximize the power efficiency in the stages 2 and 3. The I-Cache access

is distributed over two stages: the Wakeup stage (s2) and the Fetch stage (s3). In the wakeup stage,

Dynamic Voltage Scaling (DVS) technique is employed for leakage reduction. Only the required
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Figure 3.1: ABSA Architecture

subbank needs to change its supply voltage to normal VDD, others maintain the drowsy mode.

Finally, the instructions can be accurately accessed according to the information provided by the

analysis stage. The tasks of each stage are introduced in the following sections.

3.3.2 Analysis Stage

Different from the traditional IFU pipeline stage, the analysis stage is newly added. Various function

blocks are used to analyze the fetch address in order to filter the unnecessary access and provide

the information for I-Cache access. As illustrated in Figure 3.1, the analysis stage (s1) includes a

subbank decoder, a block buffer, a sentry tag array, an extended BTB and a branch predictor.

The subbank decoder determines which subbank and its row decoder are activated. Low order

index bits are fed to the subbank decoder to do this selection. In the traditional IFU, this proposed

logic would increase the cache access time since it needs to be accessed in series with the row

decoder. In ABSA, the subbank decoder is one stage ahead of the row decoder, so that the pipelined

decode operation would hide the cache access delay caused by the serial decode operation.

A block buffer [67] is used for filtering accesses to the whole I-Cache. If the block buffer

contains the instructions to be fetched, the access to I-Cache is avoided. In addition, the tag array
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of I-Cache is divided into two parts. The first part, named Sentry tag array [81] [97], contains lower

bits of the tags to decide which cache way needs to be accessed. The second part, named Upper-Tag

array, contains the remaining tag bits. The sentry-tag array is located two stages ahead of the upper-

tag array and fetching instructions. The benefit is that the access for each cache way, including of

its row decode and precharge, is avoided if the sentry-tag array identifies a miss according to the

comparison result between a sentry-tag and a fetch address in the analysis stage. Furthermore, using

the sentry-tag array does not lead to performance degradation caused by way misprediction.

An extended BTB can maintain not only the target address but also some other useful informa-

tion for the low-power techniques. The detailed design of the extended BTB is introduced in Section

3.4.1. As same as ultraSPARC-III, the gshare branch prediction is employed, and is performed in

the analysis stage because it is not too complex. Although the main concern of our work is power-

saving on I-Cache since it is the biggest power consumption contributor of IFU, other function

blocks for more detailed analysis can be also employed in the analysis stage to bring higher power

saving.

3.3.3 Wakeup and Fetch Stages

In the wakeup stage (s2), according to the result of the subbank decoding and way selection, only

one row decoder is activated to decide which cache set needs to be accessed. Concurrently, the sup-

ply voltage of all lines in the selected subbank is changed to the normal VDD while other subbanks

are in drowsy mode. Different from the DVS technique used in drowsy I-Cache, the control signal

consists of the subbank selection signal and way selection signal, which ensure only the subbank in

the selected cache way is active at a time. Finally, the remainder tag comparison is performed and

the fetch instructions are accesses in the fetch stage.

3.4 ABSA-based Low-power Implementation

In this section, we will first describe the extended BTB and the power-efficient I-Cache configu-

ration in order to support our proposed IFU. Then, we explain ABSA how to reduce the power

consumption of I-Cache.

3.4.1 Extended BTB

The extended BTB is intended to provide more information about the branch instructions in the

analysis stage. As shown in Figure 3.2, the extended BTB includes not only three traditional fields
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Figure 3.2: Extended BTB Architecture

VPNbt: Virtual Page Number of branch target
PPNbt: Physical Page Number of branch target
VPNb: physical Page Number of branch instruction
ITLB: Instruction Translation Lookaside Buffer
BTA: Branch Target Address
BA: Branch instruction Address

(i.e., the valid bit, Branch instruction Address (BA) and Branch Target Address (BTA), but also two

new extra fields: Change Page Field (CPF) and Sentry Tag Field (STF). CPF is only one bit, which

records whether the branch instruction will change to another physical page when it is taken. The

sentry tag of the branch target address is recorded in STF. It can be directly compared to the sentry

tag array to decide which cache way is valid when the branch is taken.

When a branch is resolved, the extended BTB needs to be updated only when it misses for this

branch. However, the sentry tag cannot directly be extracted from the branch target address because

a virtual memory system [99] is used in our design, in other words, the branch target address is not

a physical address but a virtual address. Thus, Instruction Translation Lookaside Buffer (ITLB) is

accessed by the Virtual Page Number of branch target (VPNbt) and the Physical Page Number of

the branch target (PPNbt) is found. As illustrated in Figure 3.2, VPNbt is translated into PPNbt to

generate both STF and CPF. The sentry tag is the corresponding bits of PPNbt to be saved in STF,

and the comparison result between the Physical Page Number of the branch instruction (PPNb) and

PPNbt is saved in CPF.
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Figure 3.3: Power-efficient I-Cache Architecture

3.4.2 Power-efficient I-Cache Configuration

Considering performance and compatibility, a power-efficient I-Cache is modeled in our simula-

tion, which stems from the principle that a large cache is broken down into smaller block for both

performance and power. And, it need not be supported by software. As shown in Figure 3.3, the

32 KB 4-way set-associative I-Cache is partitioned into eight 4KB subbanks in the horizontal con-

figuration. The size of each subbank is distributed through all cache ways so each portion of the

subbank in one cache way, called subarray, is 1KB (set = 32 and block = 32B). Figure 3.4 illustrates

the DVS circuit technique for each cache line. A separate modified precharge circuit is provided

for each subarray. For each cache line, the wakeup signal is decided by the comparison results of

the sentry tag and the subbank decoder. In our paper, when a cache line will be accessed, only 1KB

subarray is woken up by a normal VDD. Different form the drowsy I-Cache [83] in the vertically

scheme, the horizontal scheme will not cause the performance degradation that is caused by the

fetch instructions saved in an inactive cache way. Furthermore, the traditional horizontal scheme

is not power-efficient since all the cache ways are accessed at a time. In ABSA, the analysis stage

provides not only subbank selection signal but also way selection signal. Thus, more power saving

can be accomplished because only one portion of the subbank of the selected cache way is active.
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Figure 3.4: DVS Implementation of the I-Cache line

3.4.3 Reducing I-Cache Power

I-Cache used in our design exploits the fact that a large cache is broken down into smaller sub-

arrays to reduce the wiring and diffusion capacitances of bit lines as well as the wiring and gate

capacitances of word lines used to activate the memory cells. The reduced capacitance helps both

the cache access time and dynamic energy consumption lower when accessing the caches. And,

smaller drivers, precharging transistors and sense amplify can be used while partitioning the data

array horizontally into several segments of bitcells.

ABSA activates only one portion of the subbank in the selected cache way by the wakeup signal

provided by the analysis stage, and keep other subarray in the low-voltage mode. Then, the dynamic

and static power consumption can be reduced. In this way, only one subarray can be row-decoded,

precharged and accessed in the wakeup and the fetch stage, respectively. Figure 3.5 illustrates the

detailed process of wakeup signal. The subbank selection is performed by subbank decoder. The

three low order bits of the index are fed to the subbank decoder to select one of eight subbanks. For

way selection, the two-level filter technique is used in the analysis stage. First, the block buffer is
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Figure 3.5: Processing of Wakeup signal

LBIR: Last Branch Instruction Recorder
LPPN: Last Physical Page Number

accessed to check if it has contained the fetch instructions. At the same time, the sentry tag array

indexed by the fetch address in each way is compared with the sentry bit of the fetch address. Only

when the block buffer misses and the sentry tag hits, the corresponding subarray can be accessed.

However, as the same as the above mentioned, the current virtual address cannot directly gener-

ate the sentry bit for comparison. To address this problem, the last result of ITLB lookup is saved

into a special register called the Last Physical Page Number (LPPN) that includes the VPN and its

corresponding PPN of the last ITLB lookup. The current virtual address generated by the fetch ad-

dress is directly compared with the VPN in the LPPN. If they match, then the current instruction is

in the same page as the last one, so the PPN in the LPPN as the current PPN can be compared with

the sentry tag array. This approach is based on the tendency of spatial locality that the dynamic in-

struction sequence tends to sequentially increasing in the same page. There are two ways by which

a program execution can move from one instruction page to another: 1) the branch target may not
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be in the same page as the branch instruction if the branch predictor predicts taken and extended

BTB provides the target address (we call this the branch case), and 2) two successive instructions

which are on page boundaries (we refer to this as the boundary case). In branch case, the sentry

tag field of extended BTB as the current PPN can be compared with the sentry tag array. However,

in the boundary case, the PPN in the LPPN cannot be used for sentry comparison, and the wakeup

signals of all subarrays of the selected subbank are valid.

As shown in Figure 3.5, the current sentry tag maybe come from LPPN or STF of the extended

BTB. An 1-bit control signal, called Last Branch Instruction Recorder (LBIR), is used to decide

which sentry tag source is valid. It is set to zero if the current fetch address is the branch target

address that is provided by BTB at the last cycle. Otherwise, it is set to one. Note that the I-Cache

precharge and access can be generally avoided if the sentry tag comparison result is not equal. But,

in the boundary case, the current VPN does not fit on the VPN in the LPPN (mismatch output is

1), and LBIR is set to one, OR logic gate (G1) masks the way selection signal from the sentry

tag comparison. The result is that the all cache ways of the selected subbank need to be accessed.

Fortunately, since the change of virtual page number is not frequent in the continuous instruction

stream, the boundary case does not occur frequently. The results of our experiment show that the

contributions of the boundary cases is less 3% during the whole program execution.

3.5 The Analysis of Performance, Scalability and Area

In this section, we first investigate the delay penalty due to ABSA. Then, the scalability of ABSA is

discussed to present the applicability of this new power-efficient IFU architecture. Finally, we also

take the hardware cost of ABSA into concern.

3.5.1 Delay Penalty

ABSA adopts the deeper pipeline technique to reduce both of the cache access time and the power

consumption. Two kinds of delay are removed from the critical path of I-Cache access. First, by

moving sentry tag array to analysis stage, the sentry bits’ comparison is eliminated from the critical

path of I-Cache access. Second, the subbank decoder and the row decoder are moved to the analysis

and the wakeup stages, respectively. Thus, the time to access the row decoders of I-Cache is hidden.

The quantitative analysis of the critical path is presented in Section 3.6.3.

The most important contributor of performance degradation is branch misprediction penalty

due to ABSA. Compared with the traditional IFU, two newly added stages (i.e., the analysis and the
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Figure 3.6: ABSA bal Process Flow

wakeup stages) result in larger branch misprediction penalty. This adverse effect can be alleviated

by two approaches. One is to improve the precision of the branch prediction, which is the most

common and effective way to reduce the branch misprediction penalty in the deeper pipelining

processors [94]. Second is a balanced method (named ABSA bal method), which provides a tradeoff

between power consumption and performance. The detailed process flow of ABSA bal is shown

in Figure 3.6. A low-confidence mechanism [85] is employed in the analysis stage to identify the

branches most likely to be mispredicted. Once such branch is encountered, the analysis stage allows

analyzing the address of the instructions from the both paths following this low-confidence branch,

simultaneously. And, the analysis result of the alternative path is temporarily saved in the analysis

stage as the alternative wakeup signal. When this branch is issued into the execution unit, the

subarray containing the instructions from the alternative path following this branch is pre-awaked

by the alternative wakeup signal. Then, if the branch is resolved and misprediction is discovered,
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the instructions from the alternative path can be directly fetched in the fetch stage, which reduces

the branch misprediction penalty. But, the static power consumption may increase because more

than one subarray may be awaked during the execution period of the branch.

3.5.2 Scalability

A basic design principle of ABSA is that it can realize the full potential of future semiconductor

processes as process technology evolves. Scalability is therefore of major importance. When the

processor runs at a higher frequency and higher fetch bandwidth, ABSA is more scalable than the

traditional IFU architectures.

With the continuous increment of a cache size and the array of the branch predictor, the design

complexity of the low-power strategies increases so that more times for analysis and prediction are

required before I-Cache is accessed. However, as the processor frequency grows, those strategies

cannot but exceeds one cycle in the traditional IFU architecture. On the contrary, in ABSA, if the

time to implement the tasks of each stage exceeds one cycle, the only modification is to increase

the depth of the related stage. For example, the analysis stage is split into two stages for fitting the

branch predictor with a larger array.

Fetch bandwidth is another important characteristic of IFU. Trace cache [95], as the most pop-

ular approach, is widely used in modern processors in order to improve the fetch bandwidth [73]

[92]. ABSA can still maintain power efficiency when using trace cache technique. In the traditional

IFU, trace cache may increase the power consumption of IFU because the processor simultaneously

accesses to both the trace cache and the I-Cache. Otherwise, to avoid this simultaneous access, the

sequential trace cache is employed to achieve lower power consumption, but it suffers from a sig-

nificant performance loss at the meantime. In ABSA, trace cache can be assigned in fetch stage. In

the analysis stage, the index bits from the fetch address identifies whether the current trace exists. If

the trace cache hits, it can be accessed in the fetch stage and I-Cache access is avoided. Otherwise,

I-Cache is normally accessed. Using trace cache in ABSA cannot increase the power consumption

since only one of the caches can be accessed in the fetch stage, and the sequential access for a trace

cache and I-Cache is avoided so there is no performance degradation.

Furthermore, ABSA is expected to be a power-aware IFU design, which not only is useful in the

power reduction of I-Cache, but also can associate with other low-power techniques to effectively

reduce the power consumption caused by other power consumers in IFU (e.g., branch prediction,

ITLB). In this paper, we only focus on power-saving on I-Cache while ABSA is employed. In

fact, the power-saving approaches to reduce the power consumption due to other power consumers
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of IFU can be also employed by ABSA. Those low-power strategies need carry out analyze or

prediction before accessing the corresponding components of IFU, which often seem to require

more information and time. In the traditional IFU, since I-Cache, the branch prediction, and ITLB

are simultaneously implemented as soon as the fetch address is generated, the process will have to

reduce the frequency or increase the design complexity in order to gain more time for low-power

execution. On the contrary, in ABSA, the only work designers have to do is adding a new function

block into the analysis stage to provide more useful information, or deepening the analysis stage in

the case of more time being required by the low-power implementation.

3.5.3 Area Overhead

ABSA reassigns the tasks for each stage, namely ABSA changes little the function block of the

traditional IFU (e.g., branch predictor, SRAM). Three major area increments are an extended BTB,

pipeline registers and a voltage control circuit for each I-Cache line. The 1-bit Change Page Field

and 5-bit Sentry Target for each entry of BTB increase 0.75KB area for the 1K entries BTB. About

the pipeline registers, compared to the long bits of instructions and large cache size, it is much

smaller. At last, when using the DVS technique, the total area overhead is less than 3% for the

entire cache line [83]. Therefore, the area increased by ABSA can fairly be negligible for most

superscalar processors.

Furthermore, ABSA employs the subbanking technique, resulting in the increase in the cache

size. The area overhead of subbanks mainly includes three parts:

1. To reduce the wordline drive and delay, a row decoder is assigned to each subarray, which

leads to area overhead. The traditional decoder built using logic gates has long delays and high

power consumption due to requiring a very large number of transistors. Instead, the dynamic

NOR decoder [88], the structure of which reduces the number of transistors by half, is used

for row decoding in our paper. It increases the speed of the decoder, makes the layout simple

and requires less power consumption. The Figure 3.7 illustrates the dynamic 2-to-4 NOR

decoder. The number of transistors of an n-input to m-output NOR decoder are calculated by

the following formula:

numbertran. = n×m + mpercharge + ninvert (3.5.1)

where m = 2n, mpercharge is the number of precharge devices for wordlines and ninvert is the

number of invert gates for inputs. The original cache is 32 KB, 4-way set-associativity and 32
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Figure 3.7: Dynamic 2-to-4 NOR decoder.

B block size, so the row decode is a large dynamic 8-to-256 NOR decoder. It requires 2320

transistors. In ABSA, each subarray has an independent row decode that is a 5-to-32 NOR

decode. The number of transistors of each subarray decoder are 202, so the total number of

transistors for all subbanks decoder are 202 × 32 = 6464. The increment is 4144 transistors.

2. ABSA requires a separate modified precharge circuit shown in Figure 3.4 for each 1K sub-

array to reduce the leakage power by gating the precharge with the wakeup signal. . Each

precharge circuit requires three PMOS. The total transistors of percharge circuit are 96.

3. In the ABSA bal mode, to reduce the branch misprediction penalty, two subarray may be

awaken, simultaneously. Therefore, each subarray has a separate sense amplifier that is active

only when the corresponding wakeup single is valid. The size of the sense amplifier is 270

bits, including block size (32 B) + upper tag (14 bits). Note that the least 5 significant bits of

the original tag are moved to sentry tag array, so only upper tag (14 bits) need sense amplifier.
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Table 3.1: Simulation Processor Configuration.

parameters value
Fetch/Decode/Issue/Commit 4 Instructions Width
Branch Direction Predictor 16K-entry Gshare
Branch Target Buffer 512-Entry, 2-Way
LSQ Size 32
Instruction Fetch Queue Size 32
Functional Units 4 Int ALU, 2 Int mult/div, FP ALU, 2

FP mult/div, 2 MEMPORT
Branch Misprediction Penalty 6 cycles
ITLB 32entry in each way, 4KB page

size, 4way, LRU, Latency: 30 cycle
Inst./Data L1 Caches 32KB, 32Byte Blocks, 4-way

Mapped, Latency: 1 cycle
UL2 Cache 256 MB(s), 64Byte Blocks, 8-way

Mapped, Latency: 6 cycle
Memory Ideal size, Latency: 100 cycle
confidence estimator 4K-entry, 4 bit JRS (Jacobsen et al.

1996) [15]

We use the conventional 6T memory cell so total transistors for each sense amplifier are

1620. The increment of sense amplifier from 4 (one per way) to 32 (one per subarray) is

45360 transistors.

Taking these aspects, the area overhead due to subbanks is 49600 transistors. For a 32 KB 4-way

cache with a block size of 32 B, the cache area spent in the tag and data arrays is approximately

(1024×19×6)+(1024×256*6) = 1689600 transistors. The overhead is around 2.9% of the cache

area, it is negligible.

3.6 Experimental Results

3.6.1 Simulation Method

To evaluate the power consumption and performance in he 70 nm CMOS technology, we employ

a modified version of SimpleScalar [63], incorporating the Wattch framework [66] to model the

dynamic power consumption, and the HotLeakage model [65] for the static component. The Wattch

simulator built on the SimpleScalar simulation tool set integrates the CACTI [84] timing, power and
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Table 3.2: Benchmark Characteristics

Bench. Input Set
dynamic

conditional
branch (%)

Prediction
Accuracy (%)

bzip2 ref.graphic 4.14 92.21
crafty crafty.in 7.66 92.11
eon kajiya image 4.31 92.64
gap ref 8.79 94.32
gcc scilab.in 10.02 93.51
gzip ref.graphic 7.76 91.26
mcf ref 8.52 92.10
parser ref 7.76 91.90
perlbmk ref.perfext 9.40 91.25
twolf ref 4.28 86.27
vortex ref 9.68 97.66
vpr route.in 7.31 89.96

area models. The main simulation parameters, listed in Table 3.1, roughly correspond to those in

UltraSPARC-III microprocessor [89]. We use a number of integer benchmarks from the SPEC2000

suites benchmarks. All benchmarks were compiled with highest optimization level by the Alpha

compiler [96], and were fast-forwarded pass the first 500 millions instructions to bypass initializa-

tion and startup code before measured simulation begins. Then, full-detail simulation is performed

for next one billion instructions. We used the ref input data set. Table 3.2 shows that for each bench-

mark, the input set, the percentage of the dynamic conditional branches and the branch prediction

accuracy.

We also model a baseline processor. The IFU architecture of the baseline processor is based

on the UltraSPARC-III microprocessor with a 32 KB 4-way I-Cache. To compare the power effi-

ciency with ABSA, two low-power techniques on I-Cache (i.e., two-level filter scheme and drowsy

I-Cache) are used in the baseline processor. Besides, the baseline processor does not employ other

power-saving approaches in IFU for fair comparison. Note that the branch predictor uses a Gshare

algorithm that maybe not advance branch prediction scheme. However, if the simulated proces-

sor using such predictor does not suffer from much runtime overhead, others using more accurate

branch predictor would suffer from less runtime increment.
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Figure 3.8: Static Power Saving

3.6.2 Power Savings

In this section, we explain how much power can be saved in ABSA by comparing dynamic and

static power consumption of I-Cache with the baseline processor integrating two-level filter scheme

and drowsy I-Cache, respectively. The main reason to choose these two low-power techniques is

because they achieve better power/performance tradeoffs than most other related approaches and

both of them are hardware-only approaches, which do not need software supports and change of

instruction set architecture.

Static Power Reduction of I-Cache

As shown in Figure 3.8, ABSA reduces leakage power in I-Cache data cell by 90.12%, on average.

This is because ABSA is a very fine-grained method to reduce I-Cache leakage power. ABSA bal

described in Section5.1 reduces the leakage power by 85.63%, on average. The 4.49% increment

in leakage power is because that the wakeup stage needs to awake an extra subarray containing the

instructions from the alternative paths following a low-confidence branch. Figure 3.8 also shows

the Drowsy I-Cache with the horizontal configuration, which uses DVS and sub-bank prediction

technique, reduces the leakage power by 73.09%, on average. As a result, ABSA is much more
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Figure 3.9: Dynamic Power Saving

effective in saving the leakage power than the Drowsy I-Cache.

Dynamic Power Reduction of I-Cache

I-Cache employed by ABSA models a technique similar to cache subbanking for saving power in the

data and tag arrays. Besides reducing power consumption, smaller subarrays also enable the cache

array to be as well as possible to minimize wire capacitance, which results in faster access time

and lower power dissipation. However, since each subarray has its own row decoder for the low

wordline drive and delay, more subarrays mean more power consumption by row decoders. Our

measurements show the power consumption by the row decoder is about 22% of the total power

consumption of I-Cache in baseline cache configuration. But, in ABSA, only one required row

decoder of the selected cache way is activated so the data and tag array can be further partitioned

into smaller subarrays. Figure 3.9 shows the dynamic power saving is about 66.92% for ABSA and

57.62% for two-level filter scheme, respectively. So, even though the two level filter scheme is very

effective in reducing I-Cache dynamic power, ABSA can reduce more power than it. It is because

that the two-level filter scheme accesses the row decoders in all cache ways during implementing

the L1 and L2 filter.
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Table 3.3: Breakdown of Power Consumption (mWatts)
Baseline ABSA

Branch predictor 235 22.25% 245 33.24%
I-cache 646 61.17% 208 28.22%
Other 175 16.57% 175 23.74%
Low-confidence 0 0.00% 91 12.35%
Pipeline registers 0 0.00% 18 2.44%
Total 1056 737

Power Saving of IFU

Besides the power consumption of I-Cache, the total power consumption of ABSA includes of other

function blocks. Compared to the baseline IFU architecture, ABSA adds three newly hardware

that lead to power increment: 1) 6-bits for each BTB entry are required to save sentry tag field

and change page field, which increases the branch prediction about 4.3% power consumption, on

average. 2) The additional registers are required between the pipeline stages. For wakeup signals,

ABSA needs 32 registers (4 ways× 8 subbank) to transfer the wakeup signal from the analysis stage

to the wakeup stage, and another 32 registers from the wakeup stage to the fetch stage. However,

the power consumption of those registers is very small because most of them are inactive for a

long period until the corresponding subarray needs to be accessed. 3) ABSA bal also needs a low-

confidence mechanism, which causes extra power consumption. In all, compared to the baseline

IFU, the added hardware increases the power consumption by 2.65% for ABSA and 11.17% for

ABSA bal.

The breakdown of average power consumption of ABSA and the baseline IFU is shown in Table

3.3. The simulation results shows, although the newly added hardware consumes some power, the

total IFU power is still reduced by 30.3%, on average. Another observation is that I-Cache is

no longer the largest contributor of power consumption in ABSA. Note that the branch predictor

and other function blocks like as ITLB have not employed any power-saving approaches in our

experimentation. Thus, the total power consumption of a processor using ABSA will be further

decreased by integrating more low-power techniques.

3.6.3 Performance Analysis

In this section, we analyze the critical path of ABSA, and make quantitative analysis on the perfor-

mance degradation due to ABSA.
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Table 3.4: I-Cache Access Time
Baseline (ns) ABSA (ns)

Data path Tag path Data path Tag path
Row decoder 0.35 0.16 0 0
Wordline bitline 0.13 0.06 0.13 0.05
Sense amplifier 0.07 0.05 0.07 0.04
Tag compare 0 0.16 0 0.14
Mux driver 0 0.13 0 0.13
Output driver 0.06 0.06 0.06 0.06
Total 0.61 0.62 0.26 0.42
Total access time 0.62 0.42

Critical Path

In the analysis stage, the time to generate a wakeup signal consists of the subbank selection time, the

way selection time and the corresponding logic control time. By using the CACTI tool, we estimate

the time of subbank selection is approximately 0.08 ns. The time of way selection is approximately

0.45 ns (0.35 ns for accessing sentry tag array and 0.1 ns for sentry tag comparison), and the time

of control logic is approximately 0.1ns. Since the way selection signal and the subbank selection

signal occur at the same time, the total time to generate a wakeup signal is 0.55 ns. Meanwhile, the

time to implement branch prediction and block buffer is 0.46 ns and 0.3 ns, respectively. Thus, the

critical path of the analysis stage is 0.55 ns.

In the wakeup stage, according to the report in [83], the transition time switching between the

normal mode and drowsy mode is 0.28 ns. Simultaneously, the time of the row decoder is 0.26 ns.

In the fetch stage, the time to access I-Cache is shown in Table 3.4, in detail. The baseline processor

spends 0.63 ns for an I-Cache access. ABSA removes the row decode and the part of tag comparison

from the fetch stage, so accessing I-Cache in ABSA is only 0.43 ns.

After all, the largest critical path in ABSA is 0.55 ns at the analysis stage. Compared to the

baseline IFU whose critical path is 0.62 ns at the I-Cache access, the ideal improvement of processor

frequency can achieve 11.29%. Note that the largest delay does not come from I-Cache access, but

analysis stage. Therefore, smaller critical path can be expected by further deepening the analysis

stage.
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Figure 3.10: Runtime Increment for Each Benchmark

Overall Performance

ABSA induces some runtime increment due to larger branch misprediction penalty. In Section

3.5.1, we discussed two approaches to alleviate this penalty. Specifically, ABSA bal that pre-

awakes the subarray for the alternative path can reduce the extra branch misprediction penalty due

to ABSA. But, the performance is still reduced because of misprediction of branch prediction and

low-confidence mechanism. Figure 3.10 illustrates the runtime increment for each benchmark. The

results show that the runtime in ABSA increases inversely with the branch prediction accuracy and

the number of the dynamic branches in each program. For example, the vortex’s runtime increment

is small because of its high branch prediction accuracy. Although the twolf ’s branch prediction ac-

curacy is the lowest in all the benchmark, its runtime increment is not the largest. It is because that

the number of dynamically executed branches in twolf is small so it encounters the small branch

misprediction penalty. ABSA bal can reduce the branch misprediction penalty due to ABSA, the

penalty reduction for each benchmark is based on its own accuracy of the low-confidence mech-

anism. The highest accuracy is 67.64% for vortex, the lowest is 41.21% for eon and the average

accuracy is about 56.27%. Compared to the baseline, ABSA and ABSA bal increase the simulation

cycles by an average of 2.14% and 0.97%, respectively.
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3.7 Conclusions

In this chapter, ABSA, a power-efficient IFU architecture, is proposed to reduce the power con-

sumption of I-Cache with little performance overhead. It restructures the IFU pipeline stages and

carefully assigns tasks for each stage, which provides sufficient time and information to implement

a more accuracy and efficient I-Cache access. The contribution of this section is that, by removing

the unnecessary restrictions on the traditional IFU, ABSA provides the low-power strategies with

sufficient time and information to maximize the power efficiency of IFU with a little change in these

low-power strategies and hardware modification.

Furthermore, our proposed ABSA ensures compatibility with other low-power approaches and

enables them to more effectively reduce the power consumption without the cost of frequency or

design complexity. In all, compared to a conventional IFU design, ABSA reduces about 30.3%

power consumption of IFU (including 66.92% dynamic I-Cache power reduction and 85.63% static

I-Cache power reduction respectively). Meanwhile the performance degradation is about 0.97%

while ABSA bal is employed in the case of the branch prediction and low-confidence mechanism

with low prediction accuracy.

From the performance’s point of view, the biggest problem of ABSA is the performance degra-

dation due to lengthening the depth of the pipeline stages. Deeper pipelining leads to branch mis-

prediction penalty being a critical factor in overall processor performance. Although ABSA bal al-

leviates this penalty, it is only a compromise between the power consumption and the performance.

Especially in embedded processors, the complex fetch unit is not recommended. In the Chapter 4,

a new mechanism as a complement to ABSA is proposed, which can efficiently reduce the branch

misprediction penalty due to deeper pipelining, and further reduces the power consumption.
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Chapter 4

Critical Recovery Trace Cache

4.1 Introduction

In modern embedded processors, superscalar technique and deep pipelining have begun to be widely

used for higher performance, such as ARM Cortex-A8 processor and MIPS32 74K processor. As

a result, the performance bottleneck in embedded processor designs continually shifts toward the

penalty due to the misprediction recovery [94]. There is the same situation in high-end proces-

sors, such as Pentium 4 [73]. Misprediction recovery involves restoring the architectural state and

restarting fetching and renaming instructions from the correct path. A large number of researches

have been proposed to alleviate the penalty of misprediction recovery by shortening the time of

state restoration [102] [103] [110]. It is because that branch misprediction recovery requires stalling

the front-end of the processor to repair the architectural state. However, branch misprediction still

implicitly reduces the Instructions Per Cycle (IPC) because the pipeline must be flushed and refilled

with the correct instructions even if the architectural state can be quickly restored.

To address this problem, Multipath execution schemes is proposed to reduce the performance

penalty of mispredicted branches [104] [105] [106]. A confidence mechanism [85] determines the

likelihood that branch predictions are correct. If confidence in a prediction is low, multipath pro-

cessors will fetch and execute both paths following the branch. Then, the instructions from a wrong

path are selectively flushed after the branch is solved. The major disadvantage of these techniques

is design complexity. A more aggressive research [108], called Dual Path Instruction Processing

(DPIP), fetches, decodes, and renames, but does not execute instructions from the alternative path

for a low-confidence branch at the same time as the predicted path is processed. Instructions from

the the alternative path can be issued to be executed immediately after a misprediction is detected
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so that the method can reduce the re-fill penalty, and achieves a good trade-off between perfor-

mance and design complexity. However, there are three problems prevent this techniques being

applied in embedded processors: First, DPIP needs a complex fetch mechanism to support dual

path instruction fetching. Second, reducing the penalty of non-critical instructions should not affect

performance at all [109]. Instead, the performance would be decreased because the non-critical

branch is forked to degrade the Instruction Level Parallelism (ILP) of the front-end stages. Third,

the instruction cache design in DPIP may be another big problem because the instructions from two

paths are always stored in different cache lines.

An alternative approach eliminates the bottlenecks of the misprediction recovery in the fetch

stage and decode stage by saving the alternative path of the branch into trace cache, in which the

instructions are saved in decoded format rather than original format. Originally, the trace cache

with decoded instruction is used to effectively increase the ILP of fetch stage, such as execution

trace cache used in Pentium 4 [73] and loop buffer used in Pentium M [112]. This approach applied

in reducing the branch misprediction penalty is first proposed by Ashwini [113]. In that research,

the cache named Misprediction Recovery Cache (MRC) is employed to traces instruction threads

from the alternate paths of mispredicted branches. The goal of this work is to quickly bypass the

multiple fetch and decode stages of a long CISC pipeline following a branch misprediction. MRC

is only used in scalar processors and requires a larger cache size so it is not fit for modern embedded

processors.

In this chapter, we propose a recovery mechanism called a Critical Recovery Trace Cache

(CRTC) to reduce the branch misprediction penalty without the design complexity. The mecha-

nism uses a small Simplified Trace Cache (STC) to save a few decoded instructions following the

branch that will be most harmful to performance if mispredicted. Then during subsequent branch

predictions, if STC hit, the instructions from the alternative path are renamed and pre-scheduled at

the same time as the predicted path is processed, and are immediately fed to the execution stages

if the misprediction is detected. CRTC, like MRC, uses a trace cache to save decoded instructions

following a branch, but aims at reducing the misprediction penalty of the whole front-end stages.

The most contribution is that CRTC employs the filter schemes to select “good traces” to save in

the trace cache. Since the non-critical and infrequent branches avoid being traced, the effective-

ness of cache is improved. The small simple trace cache makes CRTC more suitable for embedded

processors.

The remainder of this chapter is organized as follows. Section 4.2 presents the motivation. Sec-

tion 4.3 analyzes the critical path prediction for performance improvement. The detailed design of
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CRTC is described in section 4.4. Section 4.5 describes our experimental evaluation and discusses

CRTC performance. Section 4.6 analyzes the power saving and complexity analysis. Finally, Sec-

tion 4.6 describes the main conclusions and future works.

4.2 Motivation

CRTC reduces the misprediction penalty due to flushing and refilling the front-end stages by saving

the alternative path in a trace cache. Ideally, CRTC saves the alternative path for all branches,

which requires the cache size is large enough. However, relatively small caches are more practical

for embedded processors in term of access time and power consumption. The key for efficient usage

of relatively small trace caches is to keep only the most valuable traces inside the cache and thus

avoid their being replaced by less valuable traces. Filter techniques have already been proposed as

a way to increase the usefulness of a limited size trace cache. In [114] it was proposed to store only

traces containing taken branches. In [115] it was proposed to filter traces based on their usage. In

[116] it was proposed to use profiling in order to filter out traces that are less frequent and show

little time locality. However, these traditional filter techniques are not used in our paper because the

major objective of them is to select good trace for program running. Since the purpose of CRTC

is to reduce the branch misprediction penalty, we employ a confidence mechanism to select low-

confidence branches that are more likely to be mispredicted. In general, only those low-confidence

branches would be mispredicted so its alternative path is most likely to be used.

In addition, saving the alternative path for all the low-confidence branches is still not the most

efficient. It is because not all the branches are critical. In other words, even if the non-critical branch

is mispredicted, the performance almost does not degrade. Branch misprediction do not occur in

isolation. The penalty for a branch misprediction is often affected by the preceding instructions. For

example, the branch misprediction penalty is hidden under the long data cache miss penalty if the

mispredicted branch is not fed by the long data cache miss. Thus, pre-scheduling the instructions

from the alternative path following a non-critical branch can not improve performance. A critical

path predictor in our paper is used to evaluate the criticality of the branch in order to select the

branches that are most harmful if mispredicted.

Summarizing, we propose CRTC that incorporates the idea of criticality, confidence mechanism

and a simplified trace cache to effectively reduce the penalty of branch mispredictions without

design complexity.
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4.3 Discussion on Critical Path Prediction

CRTC is efficient for embedded processor designs due to the small cache size, but suffers from low

utilization of the memory space. Based on above viewpoint, not all the branches need to save their

alternative path in cache. The low-confidence critical branch is considered as the most harmful if

mispredicted, the alternative path of which is saved in cache in order to implement quick recovery

processing. The confidence mechanism has introduced in research [105], which is very efficient to

select branches that are more likely to be mispredicted. Thus, this section focuses on the selection

of critical branch. A critical path prediction is employed to increase CRTC effectiveness despite the

limited size through filtering the alternative path of non-critical branch.

4.3.1 Critical Path Predictor Selection

The critical path prediction is divided into two categories: static critical path predictor and dy-

namic critical path predictor. A static critical path predictor, which commonly employs compilers

for improving instruction scheduling, is only involved in inherent program bottlenecks. The critical

path using a static critical prediction is constant throughout execution, it can frequently change in

a dynamically-scheduled context. A dynamic critical prediction can identify the critical instruc-

tions whose execution latency restricts the overall execution speed of the program. But, not all the

dynamic critical path predictors are suitable for our mechanism because of their significant cost

and design complexity. For example, the token-based critical path predictors [109] [118], require

a multi-ported 1.5KB array for detecting critical instructions, and modifications to the execution

core to record very detailed information on the relative timing of various events in an instruction’s

lifetime. Besides, the predictor itself requires a table of 16K 6-bit saturating counters. Viewed in

this light, a token-based critical path infrastructure incurs a significant cost and design complexity

to mitigate the benefits of the criticality-aware optimizations it enables.

Our principal claim in this study is that the recovery mechanism reduces the misprediction

penalty without increasing the design complexity so we propose a variant of the ALOLD predictor

[119] primarily because it adds almost no complexity to the core of the processor, which is important

in our design. The ALOLD predictor observes dynamic heuristic events in the pipeline which are

shown to be highly correlated with instruction criticality. Then, a critical path buffer predicts critical

instructions based on the past behavior. Different from the conventional ALOLD predictor, our

predictor not only identifies the critical instructions, but also evaluates the branch criticality in order

to select the alternative path of the branch that is the most influential in performance if mispredicted.
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4.3.2 Critical Path and Average Critical Path Length

For a given instruction windows (usually of ROB), our critical path predictor marks the first unexe-

cuted (oldest) instruction as critical-likelihood instruction. When the instructions commits, a satu-

rating counter corresponding to that instructions is incremented if it was marked, or decremented if

it was not marked. Then, the critical path buffer predicts that the instruction is critical if the counter

in the buffer is above a threshold value. Otherwise it is not critical, and all of the critical instructions

compose a critical path.

The average critical path length is the length of the average instruction dependence chain for

a given instruction window, which can be calculated by summing the latency of a given windows

of critical instructions. The misprediction penalty of the branch is positively related to the average

critical path length of its alternative path (i.e., correct path). In other words, for a given size of

instructions sequence following the branch, the longer the average critical path, the more the mis-

prediction penalty. It is because that the alternative path instructions following the branch cannot be

scheduled ahead of the branch [120]. Thus, the longer average critical path of the alternative path

leads to the lower Instruction Level Parallelism (ILP) and the less instructions can be scheduled

after solving the misprediction.

4.3.3 Branch Criticality

Not all the mispredicted branch need save its alternative path due to the limited size of CRTC. The

processor tends to trace a longer critical path following a branch so that more critical-instructions

can be scheduled after solving the misprediction. Our critical path predictor does not only identify

the critical instructions but also filters non-critical branch through evaluating the branch criticality

(called B-Criticality). B-Criticality is the average critical path length of the given windows of the

instructions sequence following the branch. The branch is considered as critical if its B-Criticality

is above a threshold value. If it is, the consecutive decoded instructions following this branch will

be saved in the cache. Otherwise it is predicted to be “non-critical” to be abandoned. For the given

window, B-Criticality is the inherent program characteristic affected by input set and unit latency.

Figure 4.1 shows the B-Criticality of the SPECint 2000 benchmarks in our simulation evaluation

that is described in section 4.5, in detail. The results are plotted in Fig. 1 on a log-log scale. These

curves are approximated by a straight line. Hence, there is a power law relationship between window

size and B-Criticality. According the results shown in Figure 4.1, for our simulation environment

(32-entry window size), the threshold value is set to 5 that might not be the best choice for some

benchmarks, but it ensure the benchmark with small B-Criticality, such as gcc, can be also optimized
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Figure 4.1: B-Criticality as a function of window size on a log-log scale

because B-Criticality are different across the benchmarks. Note that the excessive threshold value

can prevent some useful alternative paths from being traced.

4.3.4 A Critical Path Predictor Model for CRTC

In this paper, the critical path predictor uses the critical path prediction buffer that is a 64K-entry

table of saturating counters updated according to the ALOLD heuristic as described in [121]. This

technique proved to be effective in performance. The 64K-entry table would not necessarily be the

best choice for CRTC, but allows us to initially evaluate the techniques ignoring the issues of con-

tention. However, Section 4.5.5 shows that much smaller tables give nearly identical performance.

The default counter threshold, at which instructions are marked as critical, is set to 4 with an instruc-

tion marked as critical incrementing the counter by two, and non-critical instructions decrementing

by one. Thus, the counters can be as small as 3 bits. To compute B-Criticality of each branch, the

processor dynamically distributes one 7-bit saturating counter (called B-Criticality counter) for each

unresolved in-flight branch, and assigns one 5-bit saturating counter for the top entry of instruction

window to compute its lifetime1. If the instruction following a branch is predicted as critical in the

1In this paper, the lifetime is the latency of the oldest instruction until it is retired
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Figure 4.2: CRTC Architecture

given window, its lifetime is added into B-Criticality counter. Thus, the B-Criticality of a branch is

the sum of the lifetime of all critical instructions following this branch in the given window.

4.4 CRTC Architecture

CRTC uses a small simplified trace cache with decoded instructions to reduce the branch mispre-

diction penalty. Figure 4.2 shows that CRTC is added into a basic pipeline. CRTC includes trace

buffer, trace filter and STC. The trace buffer takes input from the decode stage and keeps a buffer

of the current trace, the size of which is same as instruction window (i.e., ROB). When a branch in-

struction is retired from ROB, the trace buffer stops taking input and computes B-Criticality of this

branch. Then, at the trace filter, the current branch is judged whether it is low-confidence according

to the branch confidence mechanism, and its B-Criticality is compared with the threshold value to

decide whether it is a critical branch before it is written into STC. A branch triggers a lookup in STC

to see whether its alternative path exists in cache. If it does, the instructions from the alternative

path is renamed and pre-scheduled at the same time as the predicted path are processed. Upon a

misprediction, the instructions from alternative path can be immediately fed to execution stage.

STC is a small trace cache, so that most design issues of the trace cache [95] [123] can be

utilized by STC. But considering design complexity, the alternative path is terminated if it reaches
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the second low-confidence branch. Hence, STC is simple because it does not need to consider the

complex state detection and management for multiple branches. The trace length is the same size

as the trace buffer. The instruction in STC takes up to 8 bytes since decoding instructions expand

them to a less dense encoding, and more conducive to be used by the processor’s data path.

4.4.1 CRTC Operation

To reduce the branch misprediction penalty of the whole front-end stages, CRTC renames and pre-

schedules the instruction from the alternative path as the predicted instructions are processed in

rename stage and issue stage. In this paper, we adopt a simple solution that implements separate

rename and scheduling for each path. Although it would duplicate some hardware resources such

as the Register Map Table (RMT) and Reorder Buffer (ROB), the design complexity can not be

increased because two paths are independently processed so that there have not new data dependence

and the front-end resource contention .

CRTC prevents the seconde alternative path entering into pipelines until the current mispredicted

branch is resolved. CRTC requires two current Register Mapping Table (RMT) to be maintained,

one for each path. When a branch is fetch, STC is triggered a lookup. If hit, the alternative path of

this branch can be fetched from STC. Then, the current RMT1 is copied into RMT2 so the maps

used for each path are the same at the point of the branch fork. As instructions are renamed on each

path, different physical registers are mapped to the instructions on each path. The reorder buffer

(ROB) and the load/store queue (LSQ) structures are also duplicated for each path. The instructions

from the predicted paths are inserted into ROB1/LSQ1 and issue window after renaming. At the

same time, the instructions from recovery path are inserted into ROB2/LSQ2 and an Alternative

Path Buffer (APB) [112]. Note that the alternative path is accessed in parallel with predicted path,

and is independently managed. Hence, the recovery path is not on critical path, so that there is no

extra latency for the alternative path processing. Implementing separate LSQ and ROB for each

path avoids the complications caused by the ROB and LSQ intermix blocks of instructions from

both paths.

After a branch being resolved, if it is mispredicted, the wrong path instructions stored in ROB1/LSQ1

are discarded and RMT1 is restored with RMT2 map. When the next branch is forked, the predic-

tion path will use the ROB2 and LSQ2, and the alternative path will be inserted into ROB1 and

LSQ1. Then, the instructions stored in the APB will be inserted into issue windows. Conversely,

the instructions stored in ROB2/LSQ2 are flushed and the RMT2 is discarded.
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Table 4.1: Basic Configuration of the Simulation

Fetch engine Up to 4 instr./cycle
L1 D/ L1 I Cache 32KB,32Byte/line,4-way set-associative, 2 cycles
L2 unified cache 512KB, 32Byte line,

4-way set-associative, 12 cycles
Main Memory 200 cycles

Branch prediction 8K-entry gshare predictor and 8K-entry bimodal,
16K selector, 2 branches per cycle

Pipeline Width 4 instr./cycle (retire 4 instr./cycle)
Instruction Window Size 32 entries scheduling window

ROB 32 entries reorder buffer
pipeline / Front-end stages 10 stages / 4 stages
Function unit and latency 4 int ALU 1cycle, 1 Int Mult 3cycle

Div 20cycle, 4 memory 2cycle

4.5 Experimental Results

4.5.1 Simulation Method

The performance is measured by using an extended version of the sim-outorder simulator from

the SimpleScalar tools set 3.0 [63], along with the simulation of the proposed CRTC mechanism.

An aggressive prediction [125] is used in our simulation to verify the performance of CRTC. The

baseline simulation configurations, listed in Table 4.1, roughly correspond to those in MIPS 1000

[127]. All the SPEC CPU2000 integer benchmarks were used. We do not consider the floating-

point benchmarks because these benchmarks suffer less from branch mispredictions. All SPEC

applications use the reference inputs. In order to reduce simulation time, we used the Simpoint

to choose representative samples of over 500 million instructions [96]. We compiled the SPECint

CPU2000 benchmarks for the Alpha 21264/Unix using SPEC Peak compiler and link.

Trace Size

The performance can be greatly improved by increasing the size of STC. In this paper, the trace

length of cache is 32 decoded instructions, and each decoded instruction is 64 bit. Thus, cache size

increases as the cache entries grow. Figure 4.3 shows the improvement of the IPC with the different

trace cache entries. From the results, it is obvious that increasing the number of trace cache entries

has a great impact on the fetch IPC performance. In general, performance increases significantly
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Figure 4.3: The improvement of the IPC with the different trace entry

as the trace cache is grown up to 16 entries. However, beyond 32 entries, IPC improvement drops

dramatically. Although the IPC does not completely level off as the trace size after 10 KB, the

improvement are far behind the growth of cache size. A very large trace caches indicates that

collisions within this cache is always a problem. And, too more cache entries lead to more power

and access time.

CRTC Utilization Rate

The Cache Utilization Rate (CUR) is defined to be the number of times the system finds the alter-

native path in the trace cache per a trace built. Note that this definition does not require that the

traces are unique; i.e., if a trace is replaced and built again, we count it as two different traces. Also,

the length of the trace does not affect the utilization of the trace. The CUR can be calculated as the

following equation 4.5.1 that is the a number of hits in trace cache divided by the number of writes.

CUR =
∑

hits/
∑

writes (4.5.1)

CRTC uses the filter techniques (i.e., confidence mechanism + critical path prediction) to improve-

ment the usefulness of cache so CUR is a good measurement of the efficient usage of CRTC. In

Figure 4.4 the cache utilization breakdown is presented for an 8-entry trace caches with and without
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Figure 4.4: CRTC utilization rate breakdown of an 16 entries trace cache with and without filter

filter techniques. The results show the CUR of the cache with filter is higher than without filter in

all benchmarks. Especially, only 9.8% of the writes results with more than 2 hits (CUR>2) for the

16-entry trace cache without filter, and 20% for the identical cache with filter. To achieve a high

performance, considering to size and CUR, we propose a simplified trace cache that contains up to

8 trace entries, every entry has 32 64-bits instructions. Then, the total trace size is 4KB, which is

much smaller than L1 instructions cache.

4.5.2 CRTC Performance

In this section we evaluate five recovery schemes . Five different experiments are as follows:

1. MRC-16 is a 4 KB misprediction recovery cache described in [13], which has 16 trace entries

with trace length being 32 instructions. For fair comparison, it also duplicates RMT, ROB

and LSQ to implement separate rename and scheduling for each path in order to reduce the

refill time at rename and issue stages.

2. Dual Path Instructions Processing [108] is a good recovery scheme to reduce the front-end

misprediction penalty, but needs the double hardware resources of the front-end stages, a

larger instruction window and a more power fetch mechanism. Based on the Table 4.1, we

model DPIP by making the corresponding expansion for each stage of SimpleScalar pipeline

in order to implement two paths in front-end stages, simultaneously.



70

Figure 4.5: IPC improvement over the baseline configuration

3. CRTC is our proposed recovery scheme that has 2KB trace cache with 8 trace entries.

4. BR-FE is a ideal branch recovery scheme that allows the instruction window is filled instan-

taneously with instructions from the correct path after a misprediction is discovered. Thus,

the branch misprediction penalty caused by flashing and refilling the front-end stages is com-

pletely reduced.

5. PB is a perfect branch prediction, which means the processor can not suffer the misprediction

penalty.

Figure 4.5 shows shows the IPC improvement of six recovery schemes over a baseline model

that is the single-path microarchitecture without forked branches. The recovery mechanism of the

baseline model is that the front-end stages are flushed and refilled with the correct instructions from

I-Cache after the mispredicted branch is solved. MRC-16 improves IPC by 4.78%, on average.

MRC-16 only reduces the refill time in fetch and decode stages and achieves the low cache hit rate

due to small cache size, which result in its performance improvement being the smallest in the most

benchmarks. DPIP improves IPC by 5.67%, while CRTC achieves 10.05% performance improve-

ment. One of the reasons of CRTC over DPIP is, instead of forking the low-confidence branch in

DPIP, CRTC only allows the critical branches saving their alternative path so IPC degradation due

to the hardware resource competition in front-end stages is avoided by preventing the non-critical

instruction entering into instruction window. Especially, cache miss rate for fetching instructions

from the alternative path is avoided.
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In addition, PB improves IPC by 27.76%, while BR-FE improves IPC by 10.75%. The per-

formance of BR-FE is lower than PB because the instructions from the correct path can not be

scheduled in front of the branch, resulting in performance degradation even if the instructions can

be immediately fed into instruction widow after a mispredicted branch is resolved. An observation

is CRTC outperforms PB-FE in some benchmarks, such as vpr, parser and gap. These results also

explain, besides reducing the misprediction penalty due to refilling the front-end stage, the per-

formance improvement of CRTC also benefits from pre-fetching and pre-decoding the instructions

from the alternative path in order to increase the bandwidth of fetch and decode stages after the

mispredicted branch is resolved. And, this advantage will be even greater as the pipeline depth

grows. In addition, the decoded instructions from CRTC also implicitly reduce the burden of fetch

stage that is just big bottleneck for modern processor [126]. Especially, cache miss rate for fetching

instructions form the alternative path is avoided. Overall, CRTC outperforms the DPIP performance

in all benchmarks, but less hardware resource and lower complexity.

4.5.3 Gain and Loss Analysis of Performance

CRTC with a small size achieves high performance by filtering non-critical trace. But, not all the

critical non-confidence branch can be hit because of the STC miss. There are three factors degrading

the improvement in CRTC. The first is that the critical low-confidence branch is not traced by reason

that it is mispredicted as a non-critical branch. The second is that the non-critical low-confidence

branch is mispredicted as a critical branch to be stored in STC, which reduce the cache utilization

rate. The last is that the critical branch is cache miss due to the limited STC size. Fortunately, the

first two factors have little effect on performance because of the high prediction rate of the Critical

Path predictor. Different from the traditional concepts of the cache miss, cache miss in CRTC does

not always bring negative influence on the performance. Besides the limitation of STC size, the

correct critical path prediction also leads to the cache miss by preventing the non-critical branches

from being stored in STC. The non-critical branch may hardly improve the performance, instead, it

would reduce the IPL in front-end stage. So the cache miss due to the correct critical path prediction

improves the efficiency of CRTC, in essence. But, the limitation of cache size still decreases the

efficiency of CRTC for the reason that not all the critical low-confidence branches can be hit due

to the limited cache size. Figure 4.6 shows the breakdown of cache hit/miss rate. The cache miss

rate is 47.58%, where the STC miss due to filtering the non-critical branch is about 21.25%, the

STC miss due to limited size is 22.75%, and the critical path misprediction leads to STC miss up to

3.58%. Then, the cache hit is 54.42%, where about 6.08% non-critical low-confidence branches are
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Figure 4.6: Breakdown of mispredicted branch instructions based on threshold value

traced because of the incorrect critical path prediction.

4.5.4 Critical Path Buffer Size

The critical path buffer size decided the critical path prediction accuracy. We assumed a relatively

large predictor for the results in above section, but Figure 4.7 shows that it need not be large to

provide high-quality predictions. This graph shows the average performance over the benchmarks

we simulated when varying the critical path buffer size. A 1K-entry predictor provides nearly

equivalent performance to a 64K-entry.

4.5.5 Instruction Window Size

We modified the sim-outorder version of simplescalar to implement and evaluate variable length

pipelines and variable instruction window size. This section discusses the performance variation of

the baseline, DPIP and CRTC, when the instruction window size decrease. Figure 4.8 shows the

IPC when the instruction window size varies from 128 to 16. To focus the performance study on the

CRTC exclusively, the physical register file size is kept idealized in this group of experiments.
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Figure 4.7: The effect of critical path predictor buffer size on the average IPC of the benchmarks
tested.

As shown in Figure 4.8, all three models lost performance due to an decreased instruction win-

dow size. However, the strides of the decrement are not equal. As can be seen, the performance gap

between DPIP and CRTC becomes small as instruction window size decreases, and the performance

of CRTC outperforms the DPIP at the ROB equal to 16 entries. It is because the DPIP requires more

hardware resource to avoid the resource contention. And the performance advantages of CRTC will

continuously increase with adding resource limitation. So CRTC is more suitable for the low-end

processors than DPIP.

4.5.6 Effects of Pipeline Depth

Next, we evaluated the effect of pipeline depth on the performance of the each model. We varied the

Pipeline depth by changing only the number of the front-end stages. Figure 4.9 shows the average

IPC for total pipeline of 10, 14, 20 stages. We can also see the strides of the improvement are not

equal. For 10 stages, CRTC obtains an average improvement of 7.43% over baseline, but for 20

stages the obtained improvement are 11.96%. It is because the pipeline re-fill are hidden. Further,

the CRTC uses the decoded instructions to increase the ILP of fetch stage and decode stage.
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Figure 4.8: Performance with different instruction windows size

4.5.7 Power Saving and Complexity Analysis

Our purpose is to reduce misprediction penalty with low-power. So our power simulation results

and complexity analysis are compared with DPIP that is also a good engineering compromise to

balance between cost, complexity and performance.

As illustrated in Figure 4.10, on average, CRTC with 16 trace entries reduces total power con-

sumption in front-end stage by 62.6% and CRTC with 8 trace entries reduces total power by 45.4%.

By comparison, simulation results show that CRTC can reduce over half power consumption than

DPIP because CRTC eliminates re-fetching from the I-cache and subsequent decode when it hits.

Power saving of CRTC with 16 trace entries is not the same as expectation that is about two times

CRTC with 8 trace entries. It is because that the dynamic power consumption and static power

consumption are increased with growth of the size of CRTC.

For complexity analysis, CRTC almost does not increase the architecture complexity except

adding a small trace cache, so CRTC provides more widely application. The approaches using multi

path execution are more suitable for high-end superscalar processors that need a larger of hardware

resource (e.g. larger Register File, larger ROB, and larger instruction window). In additional,

fetching instructions from dual (or multi) path also can increase the burden of fetch process that is

big bottleneck in modern processor. So CRTC is also applied in embedded processor (such as AMR
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Figure 4.9: Average IPC for different pipeline depth

or MIPS) and multi-core processors.

4.6 Conclusions and future works

We proposed a new recovery critical misprediction mechanism called Critical Recovery Trace Cache

(CRTC) that reduces the latency of branch misprediction by hiding the re-fill penalty of the front-

end stages, reducing the burden of fetch process, and preventing the non-critical branch from be-

ing traced its alternative path. Different from the traditional dual path processing methods, CRTC

achieves a considerable performance improvement without increasing design complexity and re-

source cost, which is suitable for embedded processors. The size of this trace cache is relatively

small (total size is 2KB). To some practical processors (32 KB L1 I-cache for MIPS R1000 [127]

and 64KB L1 I-cache for Alpha 21264 [50]), the size of CRTC is satisfied. STC with a small size

increases the performance of processors and does not increase the delay on critical path. Thus, it

is complementary to other work that used for improving the fetch bandwidth, such as trace cache

or loop buffer. According to our simulation results, CRTC achieves about 7.43% IPC improvement

compared to the traditional processor.

There are two inadequacies of CRTC that remain to be improved. We double ROB, RMT and
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Figure 4.10: Power saving in total power of the front-end stages

LSQ to process the instructions from two paths, simultaneously. But in fact, it is not absolutely nec-

essary. An more aggressive trace cache that stores information about rename, pre-scheduling can

greatly reduce the area overhead of CRTC. The other problem is the fixed threshold value used for

filtering non-critical branches does not adapt to the different B-Criticality across different bench-

marks. In future work, a self-adaptive mechanism is expected to dynamically adjust the threshold

value according to different programs.



Chapter 5

Behavior-based Configurable Cache for
the Low-power Embedded Processors

5.1 Introduction

The temporal and spatial locality principle of the program provides the theoretically basis for most

of low-power cache designs. By exploiting the locality characteristic in a running program, the

traditional cache architecture is changed or expanded to reduce the power consumption. For ex-

ample, the traditional access mode can be changed to efficiently avoid unnecessary access, which

has been applied to phased cache [43], way predicting [44] [80], partial tag comparison [97] and

hybrid access mode [72] [74]. Filter cache [37], L-cache [33], block buffering [34] and multiple

line buffer [11] attempt to employ a small storage unit between the processor and the L1 cache to

avoid unnecessary L1 cache lookups. Other caches can split memories into smaller subsystem and

activate only the relevant part in every memory access [67] [36] [53]. Furthermore, researches also

focus on value locality to reduce the energy consumption of a cache [76] [60]. However, those

conventional caches are not generally adaptable because they are based on a fixed foundation upon

which programs execute.

Actually, the efficiency of the cache architecture greatly depends on the behaviors of a certain

application. Unfortunately, programs exhibit wide variations in behavior. Thus, researchers have

been developing configurable cache architectures whose parameters can be adjusted on demand, so

that the power consumption of a cache can be reduced by activating just the minimum hardware

resources needed for the code that is executing. The core task of a configurable cache is how to test

the configurations to identify and apply the best one, which can be done statically or dynamically.

The static approach requires that the optimal cache configurations have been predetermined before

77
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the program is executed in its real environment. In this case, a profiles-based sample execution or

simulation is typically used to search the optimal cache configuration for a particular application.

Some commercial pre-fabricated microprocessor chips have supported static configuration. For

example, the MIPS R3000/4000 [77] has a configurable cache line size. The Motorola M-CORE

supports static configuration of some cache parameters, such as the number of associativity [10].

This approach has the advantage of requiring less additional hardware (basically only adding a few

status registers to update by extra special read/write instructions) and has a much wider view of the

program. As a drawback, it needs a previous study of the applications, and must consider a tradeoff

between the exploration time and simulation accuracy.

An alternative approach is a dynamic approach, by which the cache itself automatically adjusts

its parameters to the application during executing. Many researches [51] [78] [79] [87] [88] [91]

[100] adapt this dynamic approach because of more automatic and general applicability. However,

a dynamic approach needs the extra hardware to explore the design space during runtime, and the

exploration itself can interfere with system behavior of many embedded systems. Both may not be

tolerated in real-time systems with strict timing requirements. Furthermore, a dynamic approach

triggers a cache tuning by monitoring some indirect metrics (e.g., cache access miss rate, mispre-

diction rate) or some predetermined criteria calculated by those metrics. For example, although

the energy consumption is used as metrics in research [101], it is calculated by the equation of the

energy dissipation, not real estimate of energy. Thus, the practical power consumption cannot be

accurately reflected.

Once the best cache configuration to a particular application is determined, it is applied to tune

a configurable cache during system initialization or even during runtime, which can reduce average

cache power consumption by over 40%, along with performance improvement in most cases [79]

[87] [100]. Cache requirements can also vary within phases of an application [107], and tuning

the cache to phase can yield additional improvement. In this case, a configurable cache design

tests configurations and tunes this cache for the different phase of the application. The biggest

challenge of this approach is determining a good tuning interval. Nearly all existing researches on

configurable cache used Temporal Approach, where both the test and application of configurations

are tied to successive intervals in time. This approach works well only if the behavior of the code is

largely stable across successive intervals.

In our work, we propose a behavior-based configurable cache that can reduce power consump-

tion without significantly increasing the design complexity. In this design, the optimal configuration
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is statically exploited for the different phases of an application, and the configurable cache is ad-

justed at the boundary of phases in order to adapt to the changing program behavior. In general,

phases of an application tend to be different cache demands if the behavior variation among them is

very large. Therefore, the different phases need to be identified, and the optimal cache configuration

is exploited for each of them. Different from the traditional configurable cache employing tempo-

ral approach, our proposed design follows the prior research [117], which exploits the repetition of

program behavior within a single application to identify the program phases based on the position in

the code. By this scheme, an application is divided into modules (e.g., subroutines or loop) that are

natural candidates of phases. Prior execution of a module can be used to accurately predict behavior

of future instances. In other words, the behavior of the same module at the different position in the

code (i.e., the behavior of the different instances of the same module) can sustain great similarities

from an architecture perspective.

The behavior-based configurable cache using a static approach has the drawbacks of requiring

a previous study of the code and losing some performance because of the lack of execution time

information. Fortunately, we employ the static approach based on a basic consensus that an embed-

ded system would have a fixed application that would run on the microprocessor platform having

the configurable cache. Based on simulations on the platform, we would pre-determine the best

configuration for that application, but only once. And, the behavior-based configurable cache ex-

ploits program behavior repetition, which can significantly reduce the period of the configuration

exploitation without affecting the simulation accuracy. In addition, research [117] has indicated

that, in general, the behavior repetition of modules under different input and architecture configu-

ration can maintain great stability so the optimal configuration exploitation is a one-time effort for

a particular application regardless of the input used or the architecture configuration used. But, for

the advantages, static approach requires less additional hardware and has a much wider view of the

program. Taking those into account, the static approach makes sense in an embedded application

where the drawbacks are slight.

This chapter is organized as follows: Section 5.2 describes our configurable cache architecture.

In Section 5.3, we explain the implementation of the behavior-based configurable cache. Section

5.4 summarizes an experimental framework and shows the evaluation results. Finally, we conclude

the paper and discuss the future works.



80

Figure 5.1: A configurable cache architecture

5.2 Configurable Cache Architecture

The configurable cache used in this paper is based on the configurable cache architecture proposed

by Zhang [79] and integrates the halting cache technique [122] with some modifications described

below. The basic level-one cache configuration shown in Figure 5.1 is an 8 KB, four-way set-

associativity and a base line size of 64 bytes. We attempt to dynamically vary four parameters of

cache (cache size, line size, associativity and access mode) to find the optimal cache configuration

for various modules during the course of running a special program. Eight extra registers are used

to achieve different cache configurations. Reg0 and Reg1 are 1 bit, which combine with address bits

a11 and a12 to generate four signals c0, c1, c2 and c3 to control the set-associativity. Reg2 is 1 bit to

open/close the block buffer. Four way-selecting registers, Reg3, Reg4, Reg5 and Reg 6, signal the

cache to enable/disenable the corresponding cache way by employing Gated-Vdd technique [58].

Reg 7 that is not shown in Figure 5.1 is two bits to indicate how many bytes to read from the upper

memory. Table 5.1 shows the cache configurations with different register values.

Our configurable cache uses a single block buffer described by Su and Despain [33] to reduce

the power consumption by changing access mode. The block buffer saves the instructions which
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Table 5.1: Cache configurations with different register values

come from the last accessed block. Thus, the next required data are likely to be directly fetched from

this block buffer so that the normal level-one cache access is avoided. By our simulation results, the

use of one block buffer can result in roughly 30% reduction in cache power consumption. A register

(designated ”Reg 2” in Figure 5.1) specifies whether the block buffer needs to be accessed. If there

has good spatial locality in the current code segment, the block buffer is allowed to access to reduce

the number of unnecessary level-one cache access. Otherwise, it is unused.

Different from the self-tuning cache proposed by Zhang [79] using way prediction that leads

to variable hit latency, our proposed configurable cache employs the halting cache technique. As a

result, it is not only having a fixed hit time but also having the ability to predict misses early, which

is very important to an embedded system design because variable hit latency not only slows down

the cache, but also causes many difficulties in efficiently scheduling depending on instructions in the

core. The halting cache technique employed in this paper moves the low-order 4 bits of each tag to

an independent content-addressable memories (CAMs) in order to determine tag mismatch per way.

To do this, instead of using three inverters (two for word line driver and one after tag comparison)

in the traditional cache architecture, we used three NAND gates (G1, G2 and G3 as shown in Figure

5.1). Thus, the cache set can be accessed only when the halt tag is match and the corresponding
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Figure 5.2: Access flow of the configurable cache

way is valid, which is controlled by the outputs of the configuration circuit (i.e., c0, c1, c2 and c3)

and way-selecting registers (i.e., from Reg3 to Reg6).

5.2.1 Time and area overhead

Compared to the conventional access flow, our configurable cache would not induce a delay penalty.

The access steps for a given configuration cache are shown in Figure 5.2. The block buffer access

and halt tag comparison are implemented concurrently with set decoding. In other words, delay

penalty of both can be completely hidden by the set decoding. However, we replaced three inverters

on the critical path with NAND gates as mentioned above. It could increase the cache critical path

delay since a NAND gate contains more transistors than an inverter. Tuning the transistor size can

reduce the NAND delay. We performed SPICE simulations to compare the delay before and after

resizing. Our results show that if transistor sizes are maintained the same, the total delay increase

on the cache critical path is about 6%. Fortunately, this increment can be avoided if the NAND

gate transistor size is tripled, which does not affect a significant overall area increment since those

transistors didn’t occupy much area in contrast with large data array or tag array.

The baseline cache uses 6T SRAM cell technique. For an 8 KB four-way cache with a block

size of 32 B, the total storage area size is about 425472 transistors including tag array (set number
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64 * set-associativity 4 * tag size 21 bit * 6T) and data array (set number 64 * set-associativity 4 *

data size 256 bits * 6T). The major area overhead due to our configurable cache design comes from

three sources: 1) an extra block buffer uses a 9T CAMs cell to implement the tag and index part

(the width is 27 bit), and the data part can be implemented with 8T latch, the size of which is same

as the base line size (i.e. 256 bits). Thus, its total area overhead is roughly (9*27) + (8*256) =2291

transistors, which is about 0.5% of the total storage area. 2) We must remove the low-order 4 bits

from the tag array to the halt tag array. To minimize the halt tag array access, we use the 10T CAMs

cell to implement the halt tag array. The total area overhead is 4 * (halt tag size 4 bits) * (set number

64) * (set-associativity 4) = 4096 transistors, in which value 4 is the difference between the 10T

and 6T memory cell per halt tag bit. 3) For each word line driver, two inverters are replaced by the

NAND gates (i.e. G1 and G2) with tripling size. This area overhead is 2 * 6T * 3 * (set number 64) *

(set-associativity 4) = 9216. Besides, using the Gated-Vdd technique and replacing the inverter with

the NAND gate (G3) after remained tag comparison also affect little on cache size. But, each way

only allocates one Gated-Vdd and one G3 so those size increments can be ignored. In summary, the

total storage area increment is about 15603 transistors, which increases the traditional 8 KB cache

size by less than 3.7%. We compared the cache model before and after circuit modification (storage

body shares about 60% on the total cache model size) by CACTI3.0 [62]. The result shows that the

overall increasing of size is 2.2% compared with the conventional cache.

5.2.2 The problem of configurable cache

There are two hazards caused by the configurable cache: data rename and mismapped. The former

is that the data saved in the same address in main memory simultaneously appears in two different

locations of the cache because of different set-associativity and line size between two modules. A

simple resolution is that all of data in cache are invalidated when configuring. But, this approach

leads to significantly reduce the cache performance if configuring cache is quite frequent, but has

only minor effects on dynamic configuration with larger granularity. The latter is because that

the set number may be different under different cache configuration, resulting in the difference on

the number of bits of tag comparison. Thus, full tags (21 bits in our paper) are used to compare

regardless of cache configuration.



84

(a) Cache size exploration (b) Cache line exploration

(c) Set-associativity exploration (d) Access mode exploration

Figure 5.3: Configuration exploration for bzip

5.3 Behavior-based Policy

In order to apply the optimal cache configuration during the course of the program, we perform an

off-system pre-analysis for each application, which has four steps: 1) Module selection, 2) Config-

uration exploration, 3) Choosing the configurations and 4) Instrumentation. We consider the issues

in these steps in the following sections.

5.3.1 Module selection

The first step in the analysis is to statically partition the program into smaller units, called modules.

A specified optimal cache configuration is performed at the beginning of each module. There are

two reasons that lead us to using the behavior-based approach instead of a temporal-based one. First,

intuitively, the code strongly affects cache demand. In fact, the processor only uses an instruction

address to access cache, so the cache demand is more related with code’s section being executed than

with the fixed time interval. Second, the behavior of the dynamic instances of a static module often
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remains very stable. These two observations agree with [124], that is, tying adaptive configuration

to the code’s position is generally more effective than temporal-based adaptive scheme because the

different instances of the same code exhibit highly similar behavior during program runtime.

The size of granularity of a module has a huge effect on the performance of our scheme. The

ideal granularity of a module depends on the particular goal of the exploitation. The module with

a large granularity may contain smaller modules with different demands on cache. On the other

hand, the module cannot be too small because configuration overhead at runtime will be large,

which results in more power consumption and performance degradation. Meanwhile, in this case,

simulation statistics tend to be determined more by the microarchitectural state than by the code

itself. In our paper, we select two basic structures as natural modules: subroutines and loops. As

the research [117] pointed out, different iterations of a loop or different invocations of a subroutine

can exhibit a very similar behavior.

But, not all subroutine have the ideal grain size or same importance, so we use two thresholds

(THlow and THlarge) to select the subroutine with the appropriate granularity. We empirically set

these thresholds to 50 K instructions per subroutine and 1M instructions per subroutine, respec-

tively. If the subroutine is smaller than THlow, it is merged with its caller. Instead, if the subroutine

is larger than THlarge, it may contain sections with different behaviors. Within this long subroutine,

we further exploit behavior repetition of loop iterations. To reduce the configuration overhead, we

only exploit long loops that have an average instance size higher than THlarge. Although these two

thresholds are selected based on empirical values, there is no significant variation across various

thresholds for a particular application under the same simulation environment. It is because these

thresholds largely depend on the target architecture more than on the application. Furthermore, in

order to reduce the complexity of the configuration exploration, certain modules can be completely

ignored for subsequent analysis if they are executed too infrequently. This approach is called sub-

routines filtering. In our paper, if the number of instructions of a certain module is below 0.5% of

the total number of dynamic instructions, the module is not considered. According to the module

filtering, the average number of modules changes from 40 to 21. Therefore, the filtering approach

helps most applications reducing more than half of static code, which simplifies the subsequent

analysis.

5.3.2 Configuration exploration and choice

After dividing the application into modules with proper granularity, we explore the different con-

figuration on each module in order to determine the optimal choice. We use a straightforward
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approach where the application is executed many times to directly measure the execution time and

energy consumption. An exhaustive configuration exploration using exhaust algorithm is too costly

to test all of cache configuration for each module. For our configurable cache, there are 36 con-

figurations by changing four parameters (cache size, line size, set-associativity and access mode).

It would require 36m experiments for m modules. To avoid the excessive design exploration, two

approximations help us greatly reduce the number of experiments. First, we assume that different

modules do not interfere with one another. Under this assumption, we just vary the configuration

for one module at a time, keeping the rest unchanged. In other words, the optimal parameter values

for each module are selected independently. Second, we gradually reduce the parameter value, and

stop the exploration if the performance degradation due to the decrease of cache resource is over a

certain threshold (Tth).

According to these approximations, configuration exploration and choice are processed as fol-

lows: we implement the fastest configuration, called basic cache configuration, for each module,

which takes the largest cache size (8 KB), the longest line size (64 byte), 4-way set-associativity

and using the block buffer. In [79], the search heuristic starts with a minimum configuration, but

we do not consider it in our paper. It is because that the cache with the minimum configuration may

not be the lowest power while the hit rate is very low due to small size. On the contrary, the cache

with maximum configuration always has a aggressive performance. Empirically, smaller resources

almost never improve the performance. We progressively reduce the four parameters to exploit

the optimal configuration. First, we reduce the cache size to 4 KB. If the power consumption is

reduced and the performance degradation is within acceptable limits (below Tth) compared to the

basic configuration, we continue to develop 2 KB. We select the cache size with the lowest power.

For the best cache size determined in former step, we reduce the line size from 64 bytes to 32 bytes.

If this degradation in line size causes a decrease in energy consumption and also guarantees the

performance constraints, the line size is reduced to 16 bytes. The line size with the best energy

consumption is chosen. Similarly, the set-associativity is also exploited in sequence from four ways

to one way. Note that not all the set-associativity needs to be exploited for certain cache size. For

example, two ways or one way for 4 KB cache and one way only for 2 KB cache need to be ex-

ploited. Finally, the fourth exploration selects the appropriate cache access mode. After performing

the exploration, the cache with the optimal configuration can be directly selected.

Figure 5.3 illustrates the configuration exploration and choice in bzip benchmark of SPEC 2000

suite, consisting of 7 modules. First, we implement the most aggressive configuration (i.e., basic

configuration), and record the total execution time and power consumption as the standard metrics.
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Table 5.2: Optimal configuration for bzip

Module
Size
(KB)

Line
(bytes)

Ways
Block
buffer

Speedup
(%)

Power
saving(%)

1 8 32 2 on -0.7 68.2
2 2 64 1 on -0.23 47.2
3 8 64 2 on -0.63 36.8
4 8 16 4 off -0.15 39.9
5 8 32 2 on -0.81 42.3
6 8 64 1 on -0,75 54.6
7 4 64 1 on -0.76 67.3

Figure 5.4: Instrumented module and operation of the stack

Figure 5.3(a) tests cache size from 4 KB to 2 KB for each module and compare them with the basic

configuration until the performance degradation exceeds Tth (set to 1%), so that the best cache size

per module can be determined. For the best cache size (the optimal cache size per module is marked

under each module in Figure 5.3(b)), we continue to exploit the line size. The line size is decreased

from 64 bytes to 32 bytes. If the decrease in line size causes an improvement in power consumption

within the bounds of the performance degradation, we reduce the line size to 16 bytes. Then, the

line size with the best power consumption is determined. Similarly, set-associativity and access

mode are exploited for each module in turn to select the optimal configuration in Figure 5.3(c) and

(d), respectively. Table 5.2 shows the optimal configuration chosen for bzip.
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Not all the configuration need implement a detailed performance simulation for a certain mod-

ule. According to our heuristic, some configuration exploration for particular modules can be ig-

nored (accelerated) by implementing a function simulation. For example, modules 1, 3, 4, 5 and 6

do not need to test cache size 2 KB, since cache size - 4 KB already exceeds Tth. In the same way,

modules 2, 3, 6 and 7 that have selected the best line size, are not necessary to perform experiments

for the line size - 16 bytes. Modules 2 and 4 also do not need to test one way configuration. Finally,

all modules explore access mode, which only need observe the variation of the power consumption

when the block buffer is shutdown because the block buffer does not affect cache access delay.

5.3.3 Instrumentation

After each module selects the optimal configuration for a particular application, the binary-code

application needs to be modified in order to instrument entry and exit points in modules. Two extra

instructions are introduced into the instruction set architecture, which change the values of the status

registers (i.e., from Reg0 to Reg7) to implement cache configuration when alternating between the

two modules. The first special instruction is writing configuration registers (ConReg we) that writes

the corresponding optimal parameter values into the configuration registers at the head of a certain

module. At the tail of the module, the other instruction, exit configuration (Exit Con), is inserted

to communicate the cache to return the previous configuration. Figure 5.4 illustrates an example

of instrumentation and the operation of the stack. For a subroutine, the entry of the subroutine is

inserted by ConReg we, and the the Exit Con is added before return instruction. For a loop, we

identify iteration boundaries and loop termination by marking the backward branch and all the side

exit branches of all chosen loops.

In the case nesting, the current configuration must be saved when other module is called, and

be restored after the return. We use a stack to store the previous configuration. The stack, which is

1 byte and 16 entries, is enough to cover most situations in our experiment. If the stack overflows,

the cache remains the current configuration until an entry of the stack is free.

5.4 Simulation

5.4.1 Evaluation Environment

To evaluate the power and performance of our proposed configurable cache, we use Wattch 1.0

[66], which is an architecture-level power analysis tool built on SimpleScalar [63] and integrated

a modified version of CACTI [62] to model a configurable level-one instructions cache. Wattch
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Table 5.3: Base system configuration
CMOS Technology 70 nm, power supply = 1.2V
Issue/decode width 4 intrs. per cycle
ROB/LSQ 64 /32 entries
Branch predictor 16K entries Gshare
Writeback buffer 8 entries

Base L1 I-cache
8 KB, 64 line-size, 4-ways, 1cycle
dynamic read power = 0.021 nJ/access
leakage power = 35.3 nW

Base L1 D-cache
8 KB, 64 line-size, 4-way, 1cycle
dynamic read power = 0.021 nJ/access
leakage power = 35.3 nW

L2 unified cache
1 MB, 64 line-size, 8-way, 12cycle
dynamic read power = 2.37 nJ/access
leakage power = 4318.4 nW

reports both the execution time and the power/energy consumption of simulated processors. Table

5.3 shows our basic system configuration parameters.

Twelve benchmark applications are taken from the SPEC 2000 suites that are typical represen-

tatives as embedded applications. To cover the wider variety of behavior, we simulate two billion

instructions for each application. For off-system analysis, we use the test input set, which greatly

help off-system analysis reduce the simulation time. It is based on a observation that the small

inputs has a similar behavior to a big input sets by exploring the behavior repetition [117].

5.4.2 Experimented Results

First, we implement module selection for all twelve benchmarks. Table 5.4 shows the number of

modules (including subroutines and loops), the static instructions per module of these benchmarks

and the average execution time per module. Practically, the average number of static code sections

is over 40 for all applications experimented, but only 21 sections remain after executing module fil-

tering. For this reason, the subsequent off-system analysis of applications is significantly simplified.

The average time of modules are also shown in table, which is dynamically obtained at run time.

The time ranges from more than ten µs to thousands of µs.

After defining modules for all applications, we implement an off-system analysis to explore the

optimal configuration for every module of every application. Table 5.5 shows the number of opti-

mal configurations for each application and the number of configurations examined by our heuristic

of the configuration exploration. The average number of optimal configurations is about 5.4. The
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Table 5.4: Module selection

Modules
Sub-

routines
Loops

Average static
intr. per module

T (µs)

bzip2 7 5 2 2458 771.2
gap 14 8 6 906 272.1
gcc 9 4 5 8471 1960.2
gzip 9 7 2 643 875.2
mcf 11 6 5 689 55.6

parser 35 23 12 1411 13.5
twolf 31 16 15 3478 506.2
vortex 7 4 3 1354 175.3

art 43 14 29 2720 168.7
applu 62 14 48 27484 1593.4
galgel 15 10 5 5896 955.4
swim 9 4 5 8719 5846.3

average 21 9.6 11.4 5352 932.8

Table 5.5: The results of the configuration exploration
(N1 is the number of optimal configurations for each application. N2 is the number of configurations
examined by our heuristic)

bzip2 gap gcc gzip mcf parser
N1 6 8 3 4 15 3
N2 7 7 7 6 7 6

twolf vortex art applu galgel swim
N1 4 3 5 6 2 1
N2 7 5 7 6 6 5

largest is 15 for mcf, and the smallest is only 1 for swim. The number of optimal configurations

of each application is different. It is because that the number of optimal configuration is related

to the behavior variability per application. Two modules of a particular application may have the

same optimal configuration if the behavior variation between them is very small. However, behav-

ior variation generally exists in the most application, specially between two different modules that

achieve different purposes. Note that the optimal configuration of swim is only one for all of mod-

ules because it has a very large stability on the behavior. A key observation is that the number of

design exploration is small. For a given application, an exhaustive search needs nm analysis, where

n is the number of configurable parameters, and each parameter has m values. But, by using our

exploration approach, we search at most (m1 + m2 + mn). For example, our configurable cache has

four parameters, including 3 values for the first three parameters and 2 values for the last (access
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Figure 5.5: The power savings achieved by three schemes

mode). Thus, the number of the off-system analysis is at most 11 for each application.

We compare our behavior-based configurable cache to a temporal-based configurable cache de-

scribed in [87] and a self-tuning configurable cache [117]. The temporal-based configurable cache

dynamically explores the optimal configuration during the execution of an application. It uses a ba-

sic interval (100 K cycle in our simulation), the adaption mechanism of which has two states: stable

and unstable. Initially, design exploration starts with the smallest configuration (2KB, 1 way and 16

bytes/line) and the state is set to unstable. In the unstable case, each configuration, according to the

order from small value to large, is tested for one interval until the largest configuration is reached

or the miss rate is below a threshold (1% in our simulation). At this point, the best configuration is

selected and the state is set to stable. In the stable case, the current cache configuration is remained

while the number of cache miss and branches do not significantly differ from those in the previ-

ous interval. Otherwise, the state is switched to the unstable state. To simplify the simulation, the

block buffer is always valid in the temporal-based scheme, and the simulation parameters such as

the threshold of miss rate follow the optimal setup proposed by original paper [87]. The self-tuning

configurable cache uses on-chip design exploration to dynamically tune the cache to a particular

application. We also modified the architecture of the self-tuning configurable cache to achieve tag-

halting technique instead of way prediction and to use the block buffer, which is more suitable
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Figure 5.6: The execution time increment

for an embedded application. With this approach, a fair comparison can be performed among the

behavior-based, the temporal-based and the self-tuning schemes.

Figure 5.5 shows the power consumption saving of three schemes, in contrast to the same design

with a basic cache (that is a traditional cache with 8KB, 4-ways set-associativity, line size 64 and

using block buffer). For brevity, we only show the total power consumption per application. Com-

pared to the basic cache, the total cache power savings are achieved by our proposed scheme in all

of applications because the cache demands during run-time are dependent on the applications. The

power reduction outperforming a temporal-based cache benefits from two aspects. One is that our

proposed configurable cache does not need extra hardware to support on-chip design exploration.

The other is that the different dynamic instances of the same module are more stable than several

successive instruction intervals so that the behavior-based scheme is able to predict further config-

uration more accurately than temporal-based scheme. The power saving by behavior-based cache

also overcomes a self-tuning cache since it further exploit the cache demands for different phase of

an application and need little extra hardware resource. In some cases, like gap, mcf and bzip, the

behavior-based cache greatly outperforms others. On the contrary, other applications like swim or

galgel achieve similar power saving among them. Overall, the integer-point applications achieved

more power saving than floating-point applications. It is because that the variation of modules of
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the integer-point applications is higher than the floating-point applications. On average, our pro-

posed behavior-based cache can reduce the power consumption by up to 60.6%, 22.3% and 11.9%

on average compared to the basic cache, the temporal-based configurable cache and the self-tuning

configurable cache, respectively.

Figure 5.6 shows the performance degradation of all applications for the behavior-based and

temporal-based scheme. Here, the self-tuning cache is not used to compare because its heuristic

algorithm only consider the power consumption. It searches the optimal configuration only un-

der the minimum power consumption so we abandon it from the performance comparison. The

behavior-based cache saves about 60.6% of the power consumption, but does not slow down the

program execution much because of the limited target slack. But, temporal-based scheme reduces

the performance by over 1%. Because, it considers the cache miss rate as straightforward explo-

ration metric, which results in more misprediction due to the variation of the prediction accuracy

among several successive intervals. Furthermore, the on-chip configuration exploration can only

changes one cache parameter at a time, which leads to adaption overhead until reaching the optimal

configuration.

5.5 Conclusions and Future work

In this chapter, we have proposed a new approach of the configurable cache on an embedded sys-

tem to reduce the power consumption without significant performance degradation, which utilizes

behavior repetition to implement off-system configuration exploration for each module of a certain

application. Once the optimal configuration is determined, it can be applied to future execution

of the same module. Our proposed configurable cache requires less additional hardware and has a

much wider view of the program. Although it needs a previous analysis of the application, the anal-

ysis is an one-time effort for each application and the development period of off-system analysis

is greatly reduced by our heuristic of the configuration exploration. So it is very suitable to em-

bedded applications because an embedded system always tends to implement a fixed application.

Meanwhile, the behavior-based scheme reduces the exploration complexity, regardless of different

of architecture and set input. As a result, our proposed behavior-based cache can reduce the power

consumption by up to 60.6% with less than 1% performance degradation, compared to the basic

cache (i.e. the fastest cache),

In our work, we only evaluated the level-one instruction cache. Future work is to demonstrate
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the effectiveness of the behavior-based scheme on the data cache and Level-two cache. And, dy-

namic modules selection and configuration decision may look to be introduced in order to meet the

requirements of a general purpose system.



Chapter 6

Conclusions

Embedded market, especially for mobile products, is likely to continue to grow in the future. One

of uncompromising requirements from an embedded system is energy efficiency, because that af-

fects directly the battery life. On the other hand, portable computing will target more demanding

applications, for example moving pictures, so that higher performance is also required.

Cache memories have been employed as one of the most important components of computer

systems, because memory accesses are confined in on-chip. Reducing the frequency of off-chip

memory accesses produces significant advantages: reducing memory-access latency and reducing

I/O driving energy. In order to achieve higher performance, designers have invested the increasing

transistor budget in the cache memories (increasing cache capacity). However,increasing the cache

capacity makes cache-access time and energy larger. Since memory references have locality: tem-

poral and spatial locality, memory accesses concentrate on the cache memory. Therefore, the perfor-

mance/energy efficiency of cache memories affects strongly the total system performance and en-

ergy dissipation. This fact suggests that we need to keep considering to develop high-performance,

low-energy cache memories.

In this thesis, we have proposed the following four techniques on cache for high performance

and low-power processors.

• Adaptive Various-width Data Cache: A D-Cache design reduces the static power consump-

tion and dynamic power consumption by exploiting the value locality. Here, the value locality

focuses on the narrow-width value that occupies a large portion of the cache access and stor-

age due to the program characteristics. AVDC exploits the popularity of narrow-width value

to reduces the power consumption of D-Cache without performance degradation. In AVDC,

the data storage unit consists of three sub-arrays to store data with different widths. When the

95
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high sub-arrays are not used, the modified high-bit SRAM cells can be closed to save their

dynamic and static power consumption.

• Analysis Before Starting an Access: Instead of developing the new low-power consumption

techniques, ABSA aims at maximizing the power efficiency of the low-power techniques on

Instruction Cache (I-Cache) by eliminating the restrictions on those low-power techniques in

the traditional IFU. This approach reorganizes the IFU pipeline and carefully assigns tasks

for each stages so that sufficient time and information can be provided for the low-power

techniques to maximize the power efficiency before starting an access.

• Critical Recovery Trace Cache: RCM reduces the penalty of branch misprediction recovery.

The mechanism uses a small trace cache to save the successive decoded instructions from the

alternative path following a branch. Then, during the subsequent predictions, the trace cache

is accessed. If there is a hit, the processor forks the second path of this branch at the renamed

stage so that the design complexity in the fetch stage and decode stage is alleviated. The most

contribution of this paper is that our proposed mechanism employs critical path prediction

to identify the branches that will be most harmful if mispredicted. Only the critical branch

can save its alternative path into the trace cache, which not only increases the usefulness of

a limited size trace cache but also avoids the performance degradation caused by the forked

non-critical branch.

• behavior-based configurable cache: A behavior-based configurable cache can dynamically

adjust the cache configuration during the program execution in embedded systems. The key

is that a program is divided into several phases based on the principle of program behavior

repetition. Then, an off-system pre-analysis is used to exploit the optimal cache configuration

(including cache size, set-associative, cache line and access mode) for each phase so that each

phase employs the different optimal cache configuration to meet the application’s demand

during the program execution.

Our proposed techniques on a cache attempt to improve performance and energy efficiency in

different ways. Some are to improve the performance and power efficiency of cache itself. The

other is to improve the performance by utilizing cache. Thus, the target of this thesis is to exploit

various aspects of advantages of cache in order to achieve high-performance, low-power processors.

We believe that more space in future processor chips will be invested for the cache memories

(not only level-1 but also level-2 level-3 cache). Thus, the cache will still be an important component
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in future processors. The followings are our future challenges:

• Reducing the energy loss on memory I/O driver. The preliminary conception is to reduce the

power consumption on the I/O driver of AVDC. When writing/reading a narrow-width value

from a cache, the I/O bus also can shut-off high-bits data bus to save the power consumption.

• We suggest a renamed trace cache that saves a set of decoded instructions following a branch,

at the same time records the related renaming information. During the subsequent predic-

tion,the trace cache is accessed. If it is hit, instructions from the alternative path bypass the

fetch and decode stages. And, the rename processing for the whole alternative path can be

completed in a single cycles by reusing the renaming information. Finally, instructions from

the alternative path can be directly issued to instructions windows if the misprediction is de-

tected. Compared to CRTC, the new mechanism using the renamed trace cache does not

increase the design complexity so it is more suitable for the embedded processors.

• In behavior-based configurable cache in this thesis, we only evaluated the level-one cache.

Future work is to demonstrate the effectiveness of the behavior-based adaptive scheme on the

Level-two cache. More power-efficient configuration and access modes are expected to be

employed by our scheme so that the power consumption, performance degradation, design

complexity can be further improved. Furthermore, dynamic modules selection and modes

decision may look to be introduced in order to meet the requirements of a general purpose

system.
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