1,316 research outputs found

    Biometric presentation attack detection: beyond the visible spectrum

    Full text link
    The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, presentation attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. In this context, we present a novel fingerprint presentation attack detection (PAD) scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and i i) an in-depth analysis of several state-of-theart techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.35% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks

    Spoof detection using time-delay shallow neural network and feature switching

    Full text link
    Detecting spoofed utterances is a fundamental problem in voice-based biometrics. Spoofing can be performed either by logical accesses like speech synthesis, voice conversion or by physical accesses such as replaying the pre-recorded utterance. Inspired by the state-of-the-art \emph{x}-vector based speaker verification approach, this paper proposes a time-delay shallow neural network (TD-SNN) for spoof detection for both logical and physical access. The novelty of the proposed TD-SNN system vis-a-vis conventional DNN systems is that it can handle variable length utterances during testing. Performance of the proposed TD-SNN systems and the baseline Gaussian mixture models (GMMs) is analyzed on the ASV-spoof-2019 dataset. The performance of the systems is measured in terms of the minimum normalized tandem detection cost function (min-t-DCF). When studied with individual features, the TD-SNN system consistently outperforms the GMM system for physical access. For logical access, GMM surpasses TD-SNN systems for certain individual features. When combined with the decision-level feature switching (DLFS) paradigm, the best TD-SNN system outperforms the best baseline GMM system on evaluation data with a relative improvement of 48.03\% and 49.47\% for both logical and physical access, respectively

    Bridging the Spoof Gap: A Unified Parallel Aggregation Network for Voice Presentation Attacks

    Full text link
    Automatic Speaker Verification (ASV) systems are increasingly used in voice bio-metrics for user authentication but are susceptible to logical and physical spoofing attacks, posing security risks. Existing research mainly tackles logical or physical attacks separately, leading to a gap in unified spoofing detection. Moreover, when existing systems attempt to handle both types of attacks, they often exhibit significant disparities in the Equal Error Rate (EER). To bridge this gap, we present a Parallel Stacked Aggregation Network that processes raw audio. Our approach employs a split-transform-aggregation technique, dividing utterances into convolved representations, applying transformations, and aggregating the results to identify logical (LA) and physical (PA) spoofing attacks. Evaluation of the ASVspoof-2019 and VSDC datasets shows the effectiveness of the proposed system. It outperforms state-of-the-art solutions, displaying reduced EER disparities and superior performance in detecting spoofing attacks. This highlights the proposed method's generalizability and superiority. In a world increasingly reliant on voice-based security, our unified spoofing detection system provides a robust defense against a spectrum of voice spoofing attacks, safeguarding ASVs and user data effectively
    • …
    corecore