49,500 research outputs found

    The modal logic of arithmetic potentialism and the universal algorithm

    Full text link
    I investigate the modal commitments of various conceptions of the philosophy of arithmetic potentialism. Specifically, I consider the natural potentialist systems arising from the models of arithmetic under their natural extension concepts, such as end-extensions, arbitrary extensions, conservative extensions and more. In these potentialist systems, I show, the propositional modal assertions that are valid with respect to all arithmetic assertions with parameters are exactly the assertions of S4. With respect to sentences, however, the validities of a model lie between S4 and S5, and these bounds are sharp in that there are models realizing both endpoints. For a model of arithmetic to validate S5 is precisely to fulfill the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal Σ1\Sigma_1 theory. The main S4 analysis makes fundamental use of the universal algorithm, of which this article provides a simplified, self-contained account. The paper concludes with a discussion of how the philosophical differences of several fundamentally different potentialist attitudes---linear inevitability, convergent potentialism and radical branching possibility---are expressed by their corresponding potentialist modal validities.Comment: 38 pages. Inquiries and commentary can be made at http://jdh.hamkins.org/arithmetic-potentialism-and-the-universal-algorithm. Version v3 has further minor revisions, including additional reference

    Initial segments and end-extensions of models of arithmetic

    Get PDF
    This thesis is organized into two independent parts. In the first part, we extend the recent work on generic cuts by Kaye and the author. The focus here is the properties of the pairs (M, I) where I is a generic cut of a model M. Amongst other results, we characterize the theory of such pairs, and prove that they are existentially closed in a natural category. In the second part, we construct end-extensions of models of arithmetic that are at least as strong as ATR0_0. Two new constructions are presented. The first one uses a variant of Fodor’s Lemma in ATR0_0 to build an internally rather classless model. The second one uses some weak versions of the Galvin–Prikry Theorem in adjoining an ideal set to a model of second-order arithmetic

    On end extensions of models of subsystems of peano arithmetic

    Get PDF
    AbstractWe survey results and problems concerning subsystems of Peano Arithmetic. In particular, we deal with end extensions of models of such theories. First, we discuss the results of Paris and Kirby (Logic Colloquium ’77, North-Holland, Amsterdam, 1978, pp. 199–209) and of Clote (Fund. Math. 127 (1986) 163; Fund. Math. 158 (1998) 301), which generalize the MacDowell and Specker theorem (Proc. Symp. on Foundation of Mathematics, Warsaw, 1959, Pergamon Press, Oxford, 1961, p. 257–263) we also discuss a related problem of Kaufmann (On existence of Σn end extensions, Lecture Notes in Mathematics, Vol. 859, Springer, Berlin, 1980, pp. 92). Then we sketch an alternative proof of Clote's theorem, using the arithmetized completeness theorem in the spirit of McAloon (Trans. Amer. Math. Soc. 239 (1978) 253) and Paris (Some conservation results for fragments of arithmetic, Lecture Notes in Mathematics, Vol. 890, Springer, Berlin, 1981, p. 251)

    Fragments of Arithmetic and true sentences

    Get PDF
    By a theorem of R. Kaye, J. Paris and C. Dimitracopoulos, the class of the ¦n+1–sentences true in the standard model is the only (up to deductive equivalence) consistent ¦n+1–theory which extends the scheme of induction for parameter free ¦n+1–formulas. Motivated by this result, we present a systematic study of extensions of bounded quantifier complexity of fragments of first–order Peano Arithmetic. Here, we improve that result and show that this property describes a general phenomenon valid for parameter free schemes. As a consequence, we obtain results on the quantifier complexity, (non)finite axiomatizability and relative strength of schemes for ¢n+1–formulas.Junta de Andalucía TIC-13

    The complexity of classification problems for models of arithmetic

    Full text link
    We observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.Comment: 15 page
    corecore