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Abstract

We survey results and problems concerning subsystems of Peano Arithmetic. In particular,
we deal with end extensions of models of such theories. First, we discuss the results of Paris
and Kirby (Logic Colloquium ’77, North-Holland, Amsterdam, 1978, pp. 199–209) and of Clote
(Fund. Math. 127 (1986) 163; Fund. Math. 158 (1998) 301), which generalize the MacDowell
and Specker theorem (Proc. Symp. on Foundation of Mathematics, Warsaw, 1959, Pergamon
Press, Oxford, 1961, pp. 257–263) we also discuss a related problem of Kaufmann (On exis-
tence of �n end extensions, Lecture Notes in Mathematics, Vol. 859, Springer, Berlin, 1980, p.
92). Then we sketch an alternative proof of Clote’s theorem, using the arithmetized complete-
ness theorem in the spirit of McAloon (Trans. Amer. Math. Soc. 239 (1978) 253) and Paris
(Some conservation results for fragments of arithmetic, Lecture Notes in Mathematics, Vol. 890,
Springer, Berlin, 1981, p. 251). c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Our aim is to survey some results and problems concerning theories in the usual
?rst-order language of arithmetic LA. Our notation is standard, so let P− denote the set
of axioms for non-negative parts of discretely ordered rings, I�n denote P− plus the
induction schema for �n formulas of LA, L�n denote P− plus the least number schema
for �n formulas and B�n denote I�0 plus the collection schema for �n formulas; I�n,
L�n and B�n are de?ned similarly.

The following theorem summarizes the relationships among the theories I�n, L�n,
etc.
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Theorem 1. For all n¿0:

I�n+1

⇓
B�n+1 ⇔ B�n

⇓
I�n ⇔ I�n ⇔ L�n ⇔ L�n:

Furthermore; the converses to the two vertical arrows are false.

The implication I�n+1 ⇒B�n+1 and the non-implication I�n ; B�n+1 were proved
by Parsons [14], while the rest of the theorem is due to Paris and Kirby [13].

The study of subsystems of PA (=Peano Arithmetic) was continued towards achiev-
ing two objectives, namely
(a) ?nding a fragment strong enough to serve as a basis for elementary number theory

and combinatorics, and
(b) obtaining independence results for central open problems in complexity theory, by

relating them to the strength of fragments of PA.
Work concerning objective (a) concentrated on the study of subsystems whose

strength is strictly below that of the theory I�1. The following fundamental prob-
lems were posed, by Wilkie and Macintyre, respectively, in the late 1970s and still
remain open.

Problem 1. Does I�0 prove that the set of primes is unbounded?

Problem 2. Does I�0 prove the pigeonhole principle for �0 de5nable maps?

An excellent source of related information is the survey paper [9] of Macintyre.
The impetus for work-concerning objective (b) was given by Hartmanis and Hopcroft,

who proved [5] that for a certain recursive set A the sentence PA =NPA is independent
of the axioms of set theory. Later a surprising connection was observed between the
question whether or not P = coNP and the following problem of Paris.

Problem 3. Does I�0 prove the Davis–Matiyasevich–Putnam–Robinson theorem?
I.e., is it true that for every �1 formula ’(̃x) we can e9ectively 5nd a polynomial
with integer coe:cients p(̃x; ỹ) such that

I�0 � ∀̃x(’(̃x) ↔ ∃ỹp(̃x; ỹ) = 0)?

The connection was discovered by Wilkie [15] and is as follows.

If Problem 3 has a positive solution; then NP = coNP:

As a consequence, there was great interest in obtaining independence results for frag-
ments of PA, hoping that they would lead to such results for PA itself. A thorough
survey of related work is due to Joseph and Young [7].
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The problem of the existence of end extensions of models of theories like B�n at-
tracted attention in the early days of work on fragments of PA. The aim has been to
prove miniaturizations of the following prototypical result of MacDowell and
Specker [10].

Theorem 2. Every model of PA has a proper elementary end extension of the same
cardinality.

The next section is devoted to discussing some results and problems in this direction.

2. On end extensions

Let us start with the main idea behind the proof of Theorem 2.

Idea of proof. Assume that M |=PA. Construct an ultra?lter U on the set of de?nable
subsets of M and then let K be the ultrapower F=U, where F is the set of de?nable
functions from M into M . It can be veri?ed that M¡eK .

By modifying this proof, Paris and Kirby obtained the following miniaturization of
the MacDowell–Specker result [13].

Theorem 3. For any countable structure M and n¿2; if M |=B�n; then there exists
a proper �n-elementary end extension of M .

Idea of proof. Let M be a countable model of B�n, n¿2 and (Fm)m∈N be an enu-
meration of all functions �n−1 de?nable in M with unbounded domain and bounded
range. The authors de?ne a chain M =X0 ⊇X1 ⊇ · · ·⊇Xm ⊇ · · · such that, for every m,
if Ym =Xm ∩dom(Fm) is unbounded and Gm =Fm � Ym, then Xm+1 =G−1

m ({i}), for some
i such that G−1

m ({i}) is unbounded in M . The sequence (Xm)m∈N leads to a complete
�n−1 ultra?lter on M , i.e. a collection U of �n−1 de?nable subsets of M such that
(i) X ∈U⇒X is unbounded in M ,
(ii) if X ⊆M is �n−1 de?nable in M , then either X ∈U or X ∩Y = ∅ for some Y ∈U,

(iii) if f is a �n−1 de?nable function from M to M and the range of f is bounded
by a∈M , then there exists i¡a such that f−1({i})∈U.

Then the authors let K be the ultrapower F=U, where F is the set of �n−1 de?nable
functions from M to M and show that M¡n;e K .

Remark 1. Paris and Kirby also proved that
(a) For any structure M and any n¿2, if M has a proper �n-elementary end extension

satisfying I!0, then M |=B�n.
(b) For any structure M , if M has a proper �1-elementary end extension, then M |=B�2.

In view of the fact that the MacDowell–Specker theorem holds for any M , the
following problem arises naturally.
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Problem 4. Does every model M of B�n; n¿2; have a proper �n-elementary end
extension?

Clote attacked this problem and showed, using formalized recursion theoretic argu-
ments, that it has a positive answer, provided that M satis?es a stronger theory [1, 2].

Theorem 4. For any n¿2; if M satis5es I�n; then there exists a proper �n-elementary
end extension of M .

Idea of proof. Let M be a model of I�n, n¿2, and let  i(x); i∈M , be an enumeration
of all �n−1 de?nable subsets of M . Clote considered the binary tree T de?ned as
follows:

$∈T iK M |= “
⋂

i¡lh($); $(i)=0

{x |  i(x)} contains at least lh($) many elements”:

By modifying the proof of the low basis theorem, he then showed that T has an in?nite
branch !n de?nable in M , which can be used to de?ne a complete �n−1 ultra?lter on M .
The rest of the proof follows that of Paris–Kirby.

A related problem, the arithmetical version of a question of Kaufmann [8], is the
following.

Problem 5. Does every countable model of B�n; n¿2; have a proper �n-elementary
end extension satisfying B�n−1?

Remark 2. (a) By the Paris–Kirby result, if M ¡n;e K and M |=B�n; n¿2, then K
satis?es I�n−2, a theory weaker than B�n−1.

(b) By another result of Paris–Kirby [13], for any n¿2, there exists a countable
M |=B�n with no proper �n-elementary end extension satisfying I�n−1.

We turn now to an alternative approach for handling end extendibility problems,
namely that using the proof of the Arithmetized Completeness Theorem (=ACT ),
attributed to Hilbert–Bernays (see [6]).

Theorem 5. Let M be a model of PA and T be a set of sentences in M such that
M |=Con(T ). Then there exists K |=T such that K is de5nable in M and M is
isomorphically embedded onto a proper initial segment of K .

The de?nability of K in M prevents the isomorphic image of M from being an ele-
mentary substructure of K . Indeed, let S(x) be a formula de?ning truth for K in M . By
the ?xed-point theorem, there exists a sentence ’ such that PA�’↔ S(�’�). Clearly
then, M |=’ iK K �|=’, so M cannot be isomorphic to an elementary substructure of K .

However, the above theorem can be used to obtain proper �n-elementary end exten-
sions, as the following result, ?rst stated explicitly by McAloon (see [11]), showed.
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Theorem 6. Let M be a model of PA; n¿0 and T be a set of sentences in M such
that M |=Con(T +�n−Th), where �n−Th denotes the set of true �n sentences. Then
there exists K |=T such that K is de5nable in M and M is isomorphically embedded
onto a proper �n-elementary initial segment of K .

The proof of this result is essentially the same as that of the ACT , the only diKerence
being that the set of true �n sentences is added to the original theory T so that the
resulting model is a �n-elementary extension of an isomorphic image of M .

In order to obtain a counterpart of the previous theorem for models of fragments of
PA, we need a miniaturization of the syntactic part of the proof of the ACT , i.e. the
extension of the theory T to a complete consistent theory �. Such a result was proved
by Paris (see [12]).

Theorem 7. Let M |=B�n; n¿2; and L be a recursive language extending LA in M .
If T is a !n−1 de5nable set of sentences of L such that M |=Con(T ); then there exists
a set � of sentences of L such that
(a) � is !n de5nable in M;
(b) � is a maximal consistent extension of T ; and
(c) the set of formulas )(x) of L such that M |=∀ a()(a)∈�) is !n de5nable in M .

Paris used this theorem to obtain proper end extensions of models of B�n or I�n

(for n¿2) so that the end extensions would satisfy the fragment true in the original
model. In view of Remark 2(b), it is impossible to demand at the same time that M
be (isomorphic to) a �n-elementary extension of K .

If one tries to prove a result that bears the same relation to Theorem 7 as
Theorem 6 to the syntactic part of the ACT , one faces the following technical problem:
the addition of the set of true �n sentences to (a suitable theory) T , which is needed
to guarantee the �n-elementary extendibility of M , increases the complexity of the base
theory so that it is not possible to extend it in M to a maximal consistent theory �.
However, this obstacle is not as serious as it seems.

First we need to modify slightly Theorem 7 as follows.

Theorem 8. Let M |= I�n; n¿2; and L be a recursive language extending LA in M .
If T1 is a �n−1 de5nable set of sentences of L and T2 is a �n−1 set of sentences of
L such that M |=Con(T1 + T2); then there exists a set � of sentences of L such that
(a) � is �0(�n) de5nable in M;
(b) � is a maximal consistent extension of T; and
(c) the set of formulas )(x) of L such that M |=∀ a()(a)∈�) is �0(�n) de5nable

in M .

(�0(�n) formulas are obtained from atomic formulas and instances of �n formu-
las through the use of connectives and bounded quanti?ers – see in [4, Section 2:2,
Chapter I]).
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Using this result, we can now give an alternative proof of Theorem 4.
Indeed, assume that M |= I�n; n¿2, and let T be I!0 + �n−1 − Th(M) + �n−1 −

Th(M). By a standard result (see, e.g., in [4, Theorem 4:33, Chapter I]), M |=Con(T ).
Therefore, T can be extended to a theory � in M satisfying (a)–(c) of Theorem 8.
This theory � can be used to transfer the Paris–Kirby construction “inside M”. Property
(c) is crucial, since it implies that, for any �n−1 formula )(x), the formula expressing
“the set {x∈M | )(x)} is unbounded” is (equivalent to) a �0(�n) formula in M .

Let Fi; i∈M , be an enumeration of all functions !n−1 de?nable in M with un-
bounded domain and bounded range. De?ne a chain M =X0 ⊇X0 ⊇X1 ⊇ · · ·⊇Xm ⊇ · · ·
of !n−1 de?nable sets as follows:

X0 = M;

Xi+1 =

{
Xi ∩ (M − dom(Fi)) if Xi ∩ dom(Fi) is unbounded in M;

G−1
i ({k}) otherwise;

where G−1
i =Fi � (M −dom(Fi)) and k is the least j such that G−1

i ({j}) is unbounded
in M – such a j always exists by B�n.

Note that, by property (c) of �; X =Xm is (equivalent to) a �0(�n) formula. Hence,
we can use induction to prove that M |=∀m∃X (X =Xm) (for details, see [3]). As in
the proofs of Theorems 3 and 4, the sequence (Xm)m∈M leads to a complete !n−1

ultra?lter on M and hence to a proper �n-elementary end extension of M .

References

[1] P. Clote, A note on the MacDowell–Specker theorem, Fund. Math. 127 (1986) 163–170.
[2] P. Clote, Addendum to “A note on the MacDowell–Specker theorem”, Fund. Math. 158 (1998) 301–302.
[3] Ch. Cornaros, C. Dimitracopoulos, A note on end extensions, Arch. Math. Logic 39 (2000).
[4] P. HPajek, P. PudlPak, Metamathematics of First-order Arithmetic, Springer, Berlin, 1993.
[5] J. Hartmanis, J.E. Hopcroft, Independence results in computer science, SIGACT News 8 (1976) 13–24.
[6] D. Hilbert, P. Bernays, Grundlagen der Mathematik, Springer, Berlin, 1939.
[7] D. Joseph, P. Young, A survey of some recent results on computational complexity in weak theories

of arithmetic, Fund. Inform. 8 (1985) 103–121.
[8] M. Kaufmann, On existence of �n end extensions, Lecture Notes in Mathematics, Vol. 859, Springer,

Berlin, 1980, pp. 92–108.
[9] A. Macintyre, The strength of weak systems, Proc. 11th Wittgenstein Symp., Kirchberg=Wechsel,

Austria, HRolder-Pichler-Tempsky, Wien, 1987, pp. 43–59.
[10] R. MacDowell, E. Specker, Modelle der Arithmetik, In?nitistic methods, Proc. Symp. on Found. of

Math., Warsaw, 1959, Pergamon Press, Oxford, 1961, pp. 257–263.
[11] K. McAloon, Completeness theorems, incompleteness theorems and models of arithmetic, Trans. Amer.

Math. Soc. 239 (1978) 253–277.
[12] J. Paris, Some conservation results for fragments of arithmetic, Lecture Notes in Mathematics, Vol. 890,

Springer, Berlin, 1981, pp. 251–262.
[13] J. Paris, L.A.S. Kirby, �n-Collection schemas in arithmetic, Logic Colloquium ’77, North-Holland,

Amsterdam, 1978, pp. 199–209.
[14] C. Parsons, On a number-theoretic choice schema and its relation to induction, in: Kino, Myhill, Vesley

(Eds.), Intuitionism and Proof Theory, North-Holland, Amsterdam, 1970, pp. 459–473.
[15] A.J. Wilkie, Applications of complexity theory to �0-de?nability problems in arithmetic, Lecture Notes

in Mathematics, Vol. 834, Springer, Berlin, 1980, pp. 363–369.


