236 research outputs found

    Explainability as a non-functional requirement: challenges and recommendations

    Get PDF
    Software systems are becoming increasingly complex. Their ubiquitous presence makes users more dependent on their correctness in many aspects of daily life. As a result, there is a growing need to make software systems and their decisions more comprehensible, with more transparency in software-based decision making. Transparency is therefore becoming increasingly important as a non-functional requirement. However, the abstract quality aspect of transparency needs to be better understood and related to mechanisms that can foster it. The integration of explanations into software has often been discussed as a solution to mitigate system opacity. Yet, an important first step is to understand user requirements in terms of explainable software behavior: Are users really interested in software transparency and are explanations considered an appropriate way to achieve it? We conducted a survey with 107 end users to assess their opinion on the current level of transparency in software systems and what they consider to be the main advantages and disadvantages of embedded explanations. We assess the relationship between explanations and transparency and analyze its potential impact on software quality. As explainability has become an important issue, researchers and professionals have been discussing how to deal with it in practice. While there are differences of opinion on the need for built-in explanations, understanding this concept and its impact on software is a key step for requirements engineering. Based on our research results and on the study of existing literature, we offer recommendations for the elicitation and analysis of explainability and discuss strategies for the practice. © 2020, The Author(s)

    Framework for examination of software quality characteristics in conflict: A security and usability exemplar

    Get PDF
    © 2020, © 2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. Standards and best practices for software quality guide on handling each quality characteristic individually, but not when two or more characteristics come into conflict such as security and usability. The objectives of this paper are twofold: (a) to argue on the importance of handling the conflicts between quality characteristics in general; (b) to formulate a framework for conflict examination of the software quality characteristics, we do so while considering the specific case of security and usability. In line with the objectives, a framework called Pattern-oriented Design Framework (PoDF) was formulated. The PoDF provides a mechanism for identification of the conflicts, modeling the conflicts to illuminate the reason for their occurrence, and eliciting the suitable trade-offs between the conflicting characteristics. The suitable trade-offs are thus documented as design patterns. The patterns can assist developers and designers in handling the conflicts in other but similar context of use. To validate and instantiate the PoDF, two studies were conducted. Usable security patterns discovered as a result of the studies are also presented in the paper

    Assisting software architects in architectural decision-making using Quark

    Get PDF
    Non-Functional Requirements (NFRs) and constraints are among the principal drivers of architectural decision-making. NFRs are improved or damaged by architectural decisions (ADs), while constraints directly include or exclude parts of the architecture (e.g., logical components or technologies). We may determine the impact of an AD, or which parts of the architecture are affected by a constraint, but at the end it is hard to know if we are respecting the NFRs and the imposed constraints with all the ADs made. In the usual approach, architects use their own experience to produce software architectures that comply with the NFRs and imposed constraints, but at the end, especially for crucial decisions, the architect has to deal with complex trade-offs between NFRs and juggle with possible incompatibilities raised by the imposed constraints. In this paper we present Quark, a method to assist software architects in architectural decision-making, and the conceptualization of the relationship between NFRs and ADs defined in Arteon, an ontology to represent and manage architectural knowledge. Finally, we provide an overview of the Quark and Arteon implementation, the ArchiTech tool.Peer ReviewedPostprint (published version

    Development of service-oriented architectures using model-driven development : a mapping study

    Get PDF
    Context: Model-Driven Development (MDD) and Service-Oriented Architecture (SOA) are two challenging research areas in software engineering. MDD is about improving software development whilst SOA is a service-based conceptual development style, therefore investigating the available proposals in the literature to use MDD when developing SOA may be insightful. However, no studies have been found with this purpose. Objective: This work aims at assessing the state of the art in MDD for SOA systems. It mainly focuses on: what are the characteristics of MDD approaches that support SOA; what types of SOA are supported; how do they handle non-functional requirements. Method: We conducted a mapping study following a rigorous protocol. We identified the representative set of venues that should be included in the study. We applied a search string over the set of selected venues. As result, 129 papers were selected and analysed (both frequency analysis and correlation analysis) with respect to the defined classification criteria derived from the research questions. Threats to validity were identified and mitigated whenever possible. Results: The analysis allows us to answer the research questions. We highlight: (1) predominance of papers from Europe and written by researchers only; (2) predominance of top-down transformation in software development activities; (3) inexistence of consolidated methods; (4) significant percentage of works without tool support; (5) SOA systems and service compositions more targeted than single services and SOA enterprise systems; (6) limited use of metamodels; (7) very limited use of NFRs; and (8) limited application in real cases. Conclusion: This mapping study does not just provide the state of the art in the topic, but also identifies several issues that deserve investigation in the future, for instance the need of methods for activities other than software development (e.g., migration) or the need of conducting more real case studies.Peer ReviewedPostprint (author's final draft

    Preserving the Quality of Architectural Tactics in Source Code

    Get PDF
    In any complex software system, strong interdependencies exist between requirements and software architecture. Requirements drive architectural choices while also being constrained by the existing architecture and by what is economically feasible. This makes it advisable to concurrently specify the requirements, to devise and compare alternative architectural design solutions, and ultimately to make a series of design decisions in order to satisfy each of the quality concerns. Unfortunately, anecdotal evidence has shown that architectural knowledge tends to be tacit in nature, stored in the heads of people, and lost over time. Therefore, developers often lack comprehensive knowledge of underlying architectural design decisions and inadvertently degrade the quality of the architecture while performing maintenance activities. In practice, this problem can be addressed through preserving the relationships between the requirements, architectural design decisions and their implementations in the source code, and then using this information to keep developers aware of critical architectural aspects of the code. This dissertation presents a novel approach that utilizes machine learning techniques to recover and preserve the relationships between architecturally significant requirements, architectural decisions and their realizations in the implemented code. Our approach for recovering architectural decisions includes the two primary stages of training and classification. In the first stage, the classifier is trained using code snippets of different architectural decisions collected from various software systems. During this phase, the classifier learns the terms that developers typically use to implement each architectural decision. These ``indicator terms\u27\u27 represent method names, variable names, comments, or the development APIs that developers inevitably use to implement various architectural decisions. A probabilistic weight is then computed for each potential indicator term with respect to each type of architectural decision. The weight estimates how strongly an indicator term represents a specific architectural tactics/decisions. For example, a term such as \emph{pulse} is highly representative of the heartbeat tactic but occurs infrequently in the authentication. After learning the indicator terms, the classifier can compute the likelihood that any given source file implements a specific architectural decision. The classifier was evaluated through several different experiments including classical cross-validation over code snippets of 50 open source projects and on the entire source code of a large scale software system. Results showed that classifier can reliably recognize a wide range of architectural decisions. The technique introduced in this dissertation is used to develop the Archie tool suite. Archie is a plug-in for Eclipse and is designed to detect wide range of architectural design decisions in the code and to protect them from potential degradation during maintenance activities. It has several features for performing change impact analysis of architectural concerns at both the code and design level and proactively keep developers informed of underlying architectural decisions during maintenance activities. Archie is at the stage of technology transfer at the US Department of Homeland Security where it is purely used to detect and monitor security choices. Furthermore, this outcome is integrated into the Department of Homeland Security\u27s Software Assurance Market Place (SWAMP) to advance research and development of secure software systems
    corecore