206 research outputs found

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Deep learning for agricultural land use classification from Sentinel-2

    Full text link
    [ES] En el campo de la teledetección se ha producido recientemente un incremento del uso de técnicas de aprendizaje profundo (deep learning). Estos algoritmos se utilizan con éxito principalmente en la estimación de parámetros y en la clasificación de imágenes. Sin embargo, se han realizado pocos esfuerzos encaminados a su comprensión, lo que lleva a ejecutarlos como si fueran “cajas negras”. Este trabajo pretende evaluar el rendimiento y acercarnos al entendimiento de un algoritmo de aprendizaje profundo, basado en una red recurrente bidireccional de memoria corta a largo plazo (2-BiLSTM), a través de un ejemplo de clasificación de usos de suelo agrícola de la Comunidad Valenciana dentro del marco de trabajo de la política agraria común (PAC) a partir de series temporales de imágenes Sentinel-2. En concreto, se ha comparado con otros algoritmos como los árboles de decisión (DT), los k-vecinos más cercanos (k-NN), redes neuronales (NN), máquinas de soporte vectorial (SVM) y bosques aleatorios (RF) para evaluar su precisión. Se comprueba que su precisión (98,6% de acierto global) es superior a la del resto en todos los casos. Por otra parte, se ha indagado cómo actúa el clasificador en función del tiempo y de los predictores utilizados. Este análisis pone de manifiesto que, sobre el área de estudio, la información espectral y espacial derivada de las bandas del rojo e infrarrojo cercano, y las imágenes correspondientes a las fechas del período de verano, son la fuente de información más relevante utilizada por la red en la clasificación. Estos resultados abren la puerta a nuevos estudios en el ámbito de la explicabilidad de los resultados proporcionados por los algoritmos de aprendizaje profundo en aplicaciones de teledetección.[EN] The use of deep learning techniques for remote sensing applications has recently increased. These algorithms have proven to be successful in estimation of parameters and classification of images. However, little effort has been made to make them understandable, leading to their implementation as “black boxes”. This work aims to evaluate the performance and clarify the operation of a deep learning algorithm, based on a bi-directional recurrent network of long short-term memory (2-BiLSTM). The land use classification in the Valencian Community based on Sentinel-2 image time series in the framework of the common agricultural policy (CAP) is used as an example. It is verified that the accuracy of the deep learning techniques is superior (98.6 % overall success) to that other algorithms such as decision trees (DT), k-nearest neighbors (k-NN), neural networks (NN), support vector machines (SVM) and random forests (RF). The performance of the classifier has been studied as a function of time and of the predictors used. It is concluded that, in the study area, the most relevant information used by the network in the classification are the images corresponding to summer and the spectral and spatial information derived from the red and near infrared bands. These results open the door to new studies in the field of the explainable deep learning in remote sensing applications.Este trabajo ha sido subvencionado gracias al Convenio 2019 y 2020 de colaboración entre la Generalitat Valenciana, a través de la Conselleria d’Agricultura, Medi Ambient, Canvi Climàtic i Desenvolupament Rural, y la Universitat de València – Estudi General.Campos-Taberner, M.; García-Haro, F.; Martínez, B.; Gilabert, M. (2020). Deep learning para la clasificación de usos de suelo agrícola con Sentinel-2. Revista de Teledetección. 0(56):35-48. https://doi.org/10.4995/raet.2020.13337OJS3548056Baraldi, A., Parmiggiani, F. 1995. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 293-304. https://doi.org/10.1109/36.377929Bengio, Y., Simard, P., Frasconi, P. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166. https://doi.org/10.1109/72.279181Breiman, L., Friedman, J., Olshen, R.A., Stone, C.J. 1984. Classification and regression trees. Taylor & Francis: London, UK.Breiman, L. 2001. Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324Campos-Taberner, M., Romero-Soriano, A., Gatta, C., Camps-Valls, G., Lagrange, A., Le Saux, B., Beaupère, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., Randrianarivo, H., Ferecatu, M., Shimoni, M., Moser, G., Tuia, D. 2016. Processing of extremely high-resolution Lidar and RGB data: outcome of the 2015 IEEE GRSS data fusion contest-part a: 2-D contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(12), 5547-5559. https://doi.org/10.1109/JSTARS.2016.2569162Campos-Taberner, M., García-Haro, F.J., Martínez, B., Sánchez-Ruíz, S., Gilabert, M.A. 2019a. A Copernicus Sentinel-1 and Sentinel-2 Classification Framework for the 2020+ European Common Agricultural Policy: A Case Study in València (Spain). Agronomy, 9(9), 556. https://doi.org/10.3390/agronomy9090556Campos-Taberner, M., García-Haro, F.J., Martínez, B., Sánchez-Ruiz, S., Gilabert, M.A. 2019b. Evaluación del potencial de Sentinel-2 para actualizar el SIGPAC de la Comunitat Valenciana. En: XVIII Congreso de la Asociación Española de Teledetección. Valladolid, España, 24-27, septiembre. pp 11-14.Camps-Valls, G., Tuia, D., Bruzzone, L., Benediktsson, J.A. 2013. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Processing Magazine, 31(1), 45-54. https://doi.org/10.1109/MSP.2013.2279179Chuvieco, E. 2008. Teledetección Ambiental. La observación de la Tierra desde el espacio. Madrid: Ariel.Cover, T., Hart, P. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21-27. https://doi.org/10.1109/TIT.1967.1053964Estrada, J., Sánchez, H., Hernanz, L., Checa, M.J., Roman, D. 2017. Enabling the Use of Sentinel-2 and LiDAR Data for Common Agriculture Policy Funds Assignment. ISPRS International Journal of Geo-Information, 6(8), 255. https://doi.org/10.3390/ijgi6080255Friedl, M.A., McIver, D.K., Hodges, J.C., Zhang, X.Y., Muchoney, D., Strahler, A.H., Baccini, A. 2002. Global land cover mapping from MODIS: algorithms and early results. Remote sensing of Environment, 83(1-2), 287-302. https://doi.org/10.1016/S0034-4257(02)00078-0Graves, A., Mohamed, A.R., Hinton, G. 2013. Speech recognition with deep recurrent neural networks. En 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645-6649. https://doi.org/10.1109/ICASSP.2013.6638947Gilabert, M.A., González-Piqueras, J., García-Haro, J., 1997. Acerca de los índices de vegetación. Revista de teledetección, 8, 1-10. Disponible en http://www.aet.org.es/?q=revista8-4González-Guerrero, O., y Pons, X., 2020. The 2017 Land Use/Land Cover Map of Catalonia based on Sentinel-2 images and auxiliary data. Revista de Teledetección, 55, 81-92. https://doi.org/10.4995/raet.2020.13112Gregrio, A., Jansen, J. 2000. Land cover classification system (LCCS); Classification concepts and user manual for software version 2. Roma: FAO.Griffiths, P., Nendel, C., Hostert, P. 2019. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sensing of Environment, 220, 135-151. https://doi.org/10.1016/j.rse.2018.10.031Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z. 2019. XAI-Explainable artificial intelligence. Science Robotics, 4(37). https://doi.org/10.1126/scirobotics.aay7120Haralick, R.M., Shanmugam, K., Dinstein, I.H. 1973. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, 3(6), 610-621. https://doi.org/10.1109/TSMC.1973.4309314Haykin, S. 1994. Neural networks: a comprehensive foundation. River: Prentice Hall.Immitzer, M., Vuolo, F., Atzberger, C. 2016. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/rs8030166Hochreiter, S., Schmidhuber, J. 1997. Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A. 2017. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778-782. https://doi.org/10.1109/LGRS.2017.2681128Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A. 2019. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166-177. https://doi.org/10.1016/j.isprsjprs.2019.04.015Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P. 2016. Convolutional neural networks for large-scale remotesensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645-657. https://doi.org/10.1109/TGRS.2016.2612821Mikolov, T., Kombrink, S., Burget, L., Černocký, J., Khudanpur, S. 2011. Extensions of recurrent neural network language model. En 2011 IEEE International Conference on acoustics, speech and signal processing (ICASSP). Praga, República Checa, 22-27 Mayo. pp. 5528-5531. https://doi.org/10.1109/ICASSP.2011.5947611Montavon, G., Samek, W., Müller, K.R. 2018. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73, 1-15. https://doi.org/10.1016/j.dsp.2017.10.011Mou, L., Ghamisi, P., Zhu, X.X. 2017. Deep recurrent neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3639-3655. https://doi.org/10.1109/TGRS.2016.2636241Mountrakis, G., Im, J., Ogole, C. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247- 259. https://doi.org/10.1016/j.isprsjprs.2010.11.001Ndikumana, E., Ho Tong Minh, D., Baghdadi, N., Courault, D., Hossard, L. 2018. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sensing, 10(8), 1217. https://doi.org/10.3390/rs10081217Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195-204. https://doi.org/10.1038/s41586-019-0912-1Ruiz, L.A., Almonacid-Caballer, J., Crespo-Peremarch, P., Recio, J.A., Pardo-Pascual, J.E., SánchezGarcía, E. 2020. Automated classification of crop types and condition in a mediterranean area using a fine-tuned convolutional neural network. En The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Niza, Francia, 31 Agosto - 2 Septiembre (en línea). pp. 1061-1068. https://doi.org/10.5194/isprs-archivesXLIII-B3-2020-1061-2020Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., Muller, K.R. (Eds.). 2020. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Cham: Springer Nature. https://doi.org/10.1007/978-3-030-28954-6Schmedtmann, J., Campagnolo, M.L. 2015. Reliable crop identification with satellite imagery in the context of common agriculture policy subsidy control. Remote Sensing, 7(7), 9325-9346. https://doi.org/10.3390/rs70709325Schuster, M., Paliwal, K.K. 1997. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. https://doi.org/10.1109/78.650093Sitokonstantinou, V., Papoutsis, I., Kontoes, C., Lafarga Arnal, A., Armesto Andrés, A.P., Garraza Zurbano, J.A. 2018. Scalable parcel-based crop identification scheme using sentinel-2 data time-series for the monitoring of the common agricultural policy. Remote Sensing, 10(6), 911. https://doi.org/10.3390/rs10060911Story, M., Congalton, R.G. 1986. Accuracy assessment: a user's perspective. Photogrammetric Engineering and Remote Sensing, 52(3), 397-399.Tapsall, B., Milenov, P., Tasdemir, K. 2010. Analysis of RapidEye imagery for annual landcover mapping as an aid to European Union (EU) common agricultural polic. En ISPRS Technical Commission VII Symposium - 100 Years ISPRS. Viena, Austria, 5-7 Julio. pp. 568-573.Van Den Oord, A., Kalchbrenner, N., Kavukcuoglu, K. 2016. Pixel recurrent neural networks. En Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, EEUU., 20-22 Junio. pp. 1747-1756.Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., Ng, W.T. 2018. How much does multi-temporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72, 122-130. https://doi.org/10.1016/j.jag.2018.06.007Wardlow, B.D., Egbert, S.L., Kastens, J.H. 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. https://doi.org/10.1016/j.rse.2006.11.021Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J. 2000. Land use, land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Zhan, X., Defries, R., Townshend, J.R.G., Dimiceli, C., Hansen, M., Huang, C., Sohlberg, R. 2000. The 250 m global land cover change product from the Moderate Resolution Imaging Spectroradiometer of NASA's Earth Observing System. International Journal of Remote Sensing, 21(6-7), 1433-1460. https://doi.org/10.1080/014311600210254Zhang, L., Zhang, L., Du, B. 2016. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2), 22-40. https://doi.org/10.1109/MGRS.2016.2540798Zhong, L., Hu, L., Zhou, H. 2019. Deep learning based multi-temporal crop classification. Remote sensing of environment, 221, 430-443. https://doi.org/10.1016/j.rse.2018.11.032Zhu, Z., Woodcock, C.E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171. https://doi.org/10.1016/j.rse.2014.01.011Zhu, X.X., Tuia, D., Mou, L., Xia, G.S., Zhang, L., Xu, F., Fraundorfer, F. 2017. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8-36. https://doi.org/10.1109/MGRS.2017.276230

    Análise do potencial de dados Sentinel-2 na classificação da ocupação do solo no controlo de subsídios agrícolas

    Get PDF
    Mestrado em Engenharia Agronómica - Instituto Superior de AgronomiaOs agricultores submetem anualmente as suas candidaturas aos subsídios agrícolas no âmbito da Política Agrícola Comum (PAC). Cabe às administrações dos Estados-Membros estabelecer um sistema de controlo fiável e eficaz para garantir a validade das declarações dos agricultores e o cumprimento dos critérios de eligibilidade. O controlo por deteção remota (CwRS) tem demonstrado ser um método importante no apoio aos controlos de superfície (OTSC) através da fotointerpretação assistida por computador (CAPI) para a identificação de culturas. O principal objetivo deste estudo foi analisar o potencial das imagens Sentinel-2A (S2A) para a identificação das culturas, quanto ao tipo e à estação, enquanto combinadas com dados Landsat-7 (L7) e Landsat-8 (L8) aplicando algoritmo de classificação Random Forest (RF). Para acompanhar a fenologia das culturas em diferentes fases, as imagens L7, L8 e S2A foram adquiridas entre outubro de 2015 e agosto de 2016 sobre Beja (Portugal). Foram testados dois cenários diferentes pelo algoritmo RF para cada caso de identificação: usar apenas bandas espectrais ou usar as bandas mais os índices de vegetação (IV) - normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), enhanced vegetation index (EVI), soil adjusted vegetation index (SAVI) e modified soil adjusted vegetation index (MSAVI). O algoritmo RF foi calibrado e validado utilizando dados de controlo validados e fornecidos pelo Instituto de Financiamento da Agricultura e Pescas (IFAP). As classificações foram executadas usando uma abordagem assistida baseada em pixels e em objetos e as precisões foram obtidas a partir da validação cruzada 10-fold. A avaliação da precisão baseou-se na comparação entre dados da classificação e de referência. Os resultados mostraram que a melhor precisão global de 99.7% foi obtida na distinção entre estações quando se utiliza uma abordagem ao nível do pixel e os IV. Para a classificação de culturas a maior precisão global de 98.22% foi obtida quando se usa a mesma abordagem e a combinação entre bandas espectrais e IV. Na classificação das parcelas, obteve-se uma precisão global de 92.8%, sendo a precisão das culturas sempre maior ou igual a 79.2%, sendo as culturas de cereais que apresentam a maior confusão na classificaçãoN/

    The Land Tool Box is Full

    Get PDF

    Earth Observation Open Science and Innovation

    Get PDF
    geospatial analytics; social observatory; big earth data; open data; citizen science; open innovation; earth system science; crowdsourced geospatial data; citizen science; science in society; data scienc

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments

    Big Data in Bioeconomy

    Get PDF
    This edited open access book presents the comprehensive outcome of The European DataBio Project, which examined new data-driven methods to shape a bioeconomy. These methods are used to develop new and sustainable ways to use forest, farm and fishery resources. As a European initiative, the goal is to use these new findings to support decision-makers and producers – meaning farmers, land and forest owners and fishermen. With their 27 pilot projects from 17 countries, the authors examine important sectors and highlight examples where modern data-driven methods were used to increase sustainability. How can farmers, foresters or fishermen use these insights in their daily lives? The authors answer this and other questions for our readers. The first four parts of this book give an overview of the big data technologies relevant for optimal raw material gathering. The next three parts put these technologies into perspective, by showing useable applications from farming, forestry and fishery. The final part of this book gives a summary and a view on the future. With its broad outlook and variety of topics, this book is an enrichment for students and scientists in bioeconomy, biodiversity and renewable resources

    The Nexus Between Security Sector Governance/Reform and Sustainable Development Goal-16

    Get PDF
    This Security Sector Reform (SSR) Paper offers a universal and analytical perspective on the linkages between Security Sector Governance (SSG)/SSR (SSG/R) and Sustainable Development Goal-16 (SDG-16), focusing on conflict and post-conflict settings as well as transitional and consolidated democracies. Against the background of development and security literatures traditionally maintaining separate and compartmentalized presence in both academic and policymaking circles, it maintains that the contemporary security- and development-related challenges are inextricably linked, requiring effective measures with an accurate understanding of the nature of these challenges. In that sense, SDG-16 is surely a good step in the right direction. After comparing and contrasting SSG/R and SDG-16, this SSR Paper argues that human security lies at the heart of the nexus between the 2030 Agenda of the United Nations (UN) and SSG/R. To do so, it first provides a brief overview of the scholarly and policymaking literature on the development-security nexus to set the background for the adoption of The Agenda 2030. Next, it reviews the literature on SSG/R and SDGs, and how each concept evolved over time. It then identifies the puzzle this study seeks to address by comparing and contrasting SSG/R with SDG-16. After making a case that human security lies at the heart of the nexus between the UN’s 2030 Agenda and SSG/R, this book analyses the strengths and weaknesses of human security as a bridge between SSG/R and SDG-16 and makes policy recommendations on how SSG/R, bolstered by human security, may help achieve better results on the SDG-16 targets. It specifically emphasizes the importance of transparency, oversight, and accountability on the one hand, and participative approach and local ownership on the other. It concludes by arguing that a simultaneous emphasis on security and development is sorely needed for addressing the issues under the purview of SDG-16
    corecore