316 research outputs found

    Sum Throughput Maximization in Multi-Tag Backscattering to Multiantenna Reader

    Full text link
    Backscatter communication (BSC) is being realized as the core technology for pervasive sustainable Internet-of-Things applications. However, owing to the resource-limitations of passive tags, the efficient usage of multiple antennas at the reader is essential for both downlink excitation and uplink detection. This work targets at maximizing the achievable sum-backscattered-throughput by jointly optimizing the transceiver (TRX) design at the reader and backscattering coefficients (BC) at the tags. Since, this joint problem is nonconvex, we first present individually-optimal designs for the TRX and BC. We show that with precoder and {combiner} designs at the reader respectively targeting downlink energy beamforming and uplink Wiener filtering operations, the BC optimization at tags can be reduced to a binary power control problem. Next, the asymptotically-optimal joint-TRX-BC designs are proposed for both low and high signal-to-noise-ratio regimes. Based on these developments, an iterative low-complexity algorithm is proposed to yield an efficient jointly-suboptimal design. Thereafter, we discuss the practical utility of the proposed designs to other application settings like wireless powered communication networks and BSC with imperfect channel state information. Lastly, selected numerical results, validating the analysis and shedding novel insights, demonstrate that the proposed designs can yield significant enhancement in the sum-backscattered throughput over existing benchmarks.Comment: 17 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    Time-Hopping Multiple-Access for Backscatter Interference Networks

    Get PDF
    Future Internet-of-Things (IoT) is expected to wirelessly connect tens of billions of low-complexity devices. Extending the finite battery life of massive number of IoT devices is a crucial challenge. The ultra-low-power backscatter communications (BackCom) with the inherent feature of RF energy harvesting is a promising technology for tackling this challenge. Moreover, many future IoT applications will require the deployment of dense IoT devices, which induces strong interference for wireless information transfer (IT). To tackle these challenges, in this paper, we propose the design of a novel multiple-access scheme based on time-hopping spread-spectrum (TH-SS) to simultaneously suppress interference and enable both two-way wireless IT and one-way wireless energy transfer (ET) in coexisting backscatter reader-tag links. The performance analysis of the BackCom network is presented, including the bit-error rates for forward and backward IT and the expected energytransfer rate for forward ET, which account for non-coherent and coherent detection at tags and readers, and energy harvesting at tags, respectively. Our analysis demonstrates a tradeoff between energy harvesting and interference performance. Thus, system parameters need to be chosen carefully to satisfy given BackCom system performance requirement.ARC Discovery Projects Grant DP14010113

    Saiyan: Design and Implementation of a Low-power Demodulator for LoRa Backscatter Systems

    Full text link
    The radio range of backscatter systems continues growing as new wireless communication primitives are continuously invented. Nevertheless, both the bit error rate and the packet loss rate of backscatter signals increase rapidly with the radio range, thereby necessitating the cooperation between the access point and the backscatter tags through a feedback loop. Unfortunately, the low-power nature of backscatter tags limits their ability to demodulate feedback signals from a remote access point and scales down to such circumstances. This paper presents Saiyan, an ultra-low-power demodulator for long-range LoRa backscatter systems. With Saiyan, a backscatter tag can demodulate feedback signals from a remote access point with moderate power consumption and then perform an immediate packet retransmission in the presence of packet loss. Moreover, Saiyan enables rate adaption and channel hopping-two PHY-layer operations that are important to channel efficiency yet unavailable on long-range backscatter systems. We prototype Saiyan on a two-layer PCB board and evaluate its performance in different environments. Results show that Saiyan achieves 5 gain on the demodulation range, compared with state-of-the-art systems. Our ASIC simulation shows that the power consumption of Saiyan is around 93.2 uW. Code and hardware schematics can be found at: https://github.com/ZangJac/Saiyan
    • …
    corecore