2,631 research outputs found

    BIM awareness, knowledge, and implementation within a multi-disciplinary design consultancy in Scotland

    Get PDF

    Digital built Britain: level 3 building information modelling - strategic plan

    Get PDF
    [Ministerial Foreword] Construction is a sector where Britain has a strong competitive edge. We have world class capability in architecture, design and engineering and British companies are leading the way in delivering sustainable construction solutions. It is also a sector with considerable growth opportunities with the global construction sector forecast to grow by up to 70% by 2025. We are not starting from scratch. The Government in collaboration with industry has already committed to the Level 2 BIM programme as well as investing £220M in the development of a High Performance Computing programme and over £650M in the delivery of transformational high speed Broadband across the UK by 2015. We have a recent track record of world class construction deliveries such as the 2012 Olympics and Crossrail the largest construction project in Europe now reaching the half-way point. We have seen the global reaction to our Level 2 BIM programme’s successful delivery and significant cost savings which have greatly assisted the construction costs savings of £840M in 2013/4, with several major EU nations including France and Germany announcing similar BIM programmes. If we want to retain our strength in this economy we cannot stand by. We need concerted joint action from Government, Industry and Academia working in partnership toward the success of the sector and ensuring that benefits are felt across the rest of the economy. The Information Economy is transforming the way we live and work. It is crucial to our success on the global stage and to facing the challenges of urbanisation and globalisation that we grasp the opportunity that Digital Built Britain presents. [RT Hon Dr Vince Cable MP - Secretary of State for Business, Innovation and Skills and President of the Board of Trade

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    ArchCloudChain Dapp: the efficient workflow for interior designers

    Get PDF
    The interior design and construction industry involves various stakeholders who must collaborate and coordinate effectively to ensure the successful realization of projects. However, the existing workflow often suffers from fragmentation and inefficiency, leading to delays, errors, and increased costs. To address these challenges, this paper introduces the Arch Cloud Chain Dapp project, a decentralized software application that leverages blockchain technology and Building Information Modeling (BIM) to establish a transparent, secure, and efficient platform for stakeholder collaboration in interior design projects. The primary objective of this project is to reduce interior design costs while upholding high standards of quality and transparency. By integrating BIM and blockchain technology, the Arch Cloud Chain Dapp enables stakeholders to collaborate in real-time, significantly mitigating the risk of errors and miscommunication. Smart contracts play a crucial role in ensuring the enforceability and transparency of agreements, while the blockchain serves as an immutable ledger, providing an auditable record of all project transactions. These innovative features present a novel solution to the challenges faced by the interior design and construction industry. The Arch Cloud Chain Dapp project holds significant potential to revolutionize the industry by streamlining processes, enhancing collaboration, and reducing costs. Through its adoption, stakeholders can benefit from improved project outcomes, streamlined communication, and enhanced efficiency, ultimately leading to a more sustainable and prosperous interior design and construction sector

    Conceptual framework for decentralised information management along the entire lifecycle of a built asset

    Get PDF
    The construction industry is characterised by a high level of fragmentation, inefficient collaboration and a lack of trust between project stakeholders. Issues due to the fragmented nature of the construction industry are extenuated from centralised Building Information Modelling approaches. Blockchain technology can help address information management issues by providing data traceability, transparency, and immutability. First, this paper reviews centralised and decentralised approaches to lifecycle information management. Second, a conceptual framework for decentralised information management workflow based on blockchain technology and the Inter-Planetary File System is proposed. Smart contracts can improve the information flow between different phases by providing more accountability

    BIM as a strategic tool for supply chain in main projects in the United Kingdom

    Get PDF
    The need to achieve more efficiency and quality, reduce costs, cut carbon dioxide emissions and faster delivery were demanding for a vast change in the construction industry in the United Kingdom. To helping achieve these aims, as well be and remains in the vanguard of smart construction and digital design, UK made the decision to embrace Building Information Modelling (BIM), underpinned with the Government’s mandate launched in 2011, for Level 2 BIM compliance as minimum for all their centrally-procured projects by 2016. That decision resulted in a Government push to upskill the construction industry with the intention of reducing the capital and revenue costs associated with the procurement and use of buildings and infrastructure. For the public sector, BIM is offering the Government the opportunity to industrialise and reform its built environment through a digitally enabled procurement. Indeed, this Level 2 BIM programme already helping significant savings of circa £2.2bn between 2013 and 2015, making it a significant tool to meet the Government’s target of 15-20% savings on public construction costs (Cabinet Office, 2015). To support the industry to comply with Level 2 maturity, BIM Task Group and British Standard Institute, have developed several standards, documents and guides to explain clearly how BIM should be applied. The Level 2 programme is a key enabling strategy for the UK developing processes for data deliveries, classification and open data definitions. Certainly, the UK BIM standards and processes are working as a world-wide acknowledged benchmark for industry digitisation. By 2020, economists estimated that the UK market for BIM-related services will be an annual £30bn; in a global context, UK-based firms already export £7bn of architectural and engineering services; develop BIM capabilities and have a leadership position regarded to BIM, will provide UK further export growing and enable the industry to deliver higher quality and a more sustainability built environment for the future generations. This dissertation aim to encourage everyone to learn more about building information modelling and to explore the success example of the UK strategy Government related to BIM level 2 mandate. For that purpose, this document first explains the fundamental concepts of BIM and then explores the context in the UK: BIM maturity levels, the existing codes and standards, addresses the named “8 pillars of Level 2 BIM” and explains the information delivery cycle process. It also becomes relevant discuss in this paper, the current situation of the BIM adoption by the AEC industry and address some of the benefits and limitations of BIM adoption in the country. Furthermore, we look beyond and investigate the BIM level 3. The research has been conducted by an extensive review on the literature related to the topic of interest, collecting and analysis of surveys that have been conducted related to BIM in the UK and experienced working in a UK based contractor. A case of study is showed to recognise the importance of use BIM for a large project such as the High Speed 2, and additionally it is suggested a process map for BIM execution planning.A necessidade em obter mais eficiência e qualidade, reduzir custos, diminuir as emissões de carbono e de prazos de execução, exigiam uma enorme mudança na indústria da construção no Reino Unido. De forma a alcançar estes objetivos, bem como a pertencer e permanecer na vanguarda da construção inteligente e projeto digital, o Reino Unido tomou a decisão de adotar o BIM (Building Information Modelling), impulsionado pelo mandato do Governo para cumprimento do Nível 2 de maturidade como mínimo, lançado em 2011 para todos os projetos lançados centralmente, a partir de 2016. Essa decisão resultou num impulso do Governo para melhorar a indústria da construção, com a intenção de reduzir os custos de capital e receita associados à aquisição e uso de edifícios e infra-estruturas. No setor público o BIM está a proporcionar ao Governo, a oportunidade de industrializar e reformar o seu sector da construção através do procurement digital. De fato, este programa de BIM Nível 2 já ajudou a atingir poupanças significativas de cerca de £2.2 bilhões entre 2013 e 2015, tornando-o numa ferramenta significativa para atingir a meta de redução de custos com a construção pública entre os 15-20% (Cabinet Office, 2015). De forma a apoiar a indústria a cumprir com o Nível 2 de maturidade de BIM, o BIM Task Group e o British Standard Institute, desenvolveram várias standards, documentos e guias para explicar claramente como o BIM deveria ser aplicado. O programa Nível 2 é uma estratégia chave potenciadora para o Reino Unido desenvolver processos para a entrega de dados, classificação e definições de dados abertos. De fato, as BIM standards e os processos do Reino Unido estão a ser reconhecidos mundialmente como uma referência para a digitalização da indústria. Por volta de 2020, os economistas estimam que o mercado para serviços relacionados com BIM sejam £30 bilhões; num contexto global, as firmas baseadas no Reino Unido já exportam £7 bilhões de serviços de arquitetura e engenharia; desenvolver as capacidades e ter uma posição de liderança em relação ao BIM, fará com que esta exportação cresça e permitirá que a indústria entregue com mais qualidade e sustentabilidade as construções às gerações futuras. Esta dissertação pretende encorajar todos os interessados a aprender mais sobre o BIM e explorar o caso de sucesso da estratégia tomada pelo Governo do Reino Unido no que diz respeito ao mandato do BIM Nível 2. Para isso, este documento explica primeiro os conceitos essenciais do BIM e depois explora o contexto no Reino Unido: os níveis de maturidade de BIM, os códigos e standards existentes, aborda os chamados “8 pilares do BIM Nível 2” e explica o ciclo de entrega de informação. Torna-se também relevante discutir neste trabalho, a situação atual da adoção do BIM por parte da indústria AEC e abordar os benefícios e limitações na adoção do BIM no país. Adicionalmente, olha-se para o futuro e explora-se o BIM Nível 3. A pesquisa foi levada a cabo através de extensa revisão da literatura relacionada com o tópico, de recolha e análise de inquéritos realizados no Reino Unido relacionados com BIM e a experiência trabalhando numa construtora baseada no Reino Unido. É apresentado um caso de estudo para demonstrar a importância do uso do BIM num grande projeto como High Speed 2, e adicionalmente é sugerido um mapa de processo para o planejamento de execução BIM

    Management of collaborative BIM data by the Federatinon of Distributed Models

    Get PDF
    The architecture engineering and construction sector is currently undergoing a significant period of change and modernization. In the United Kingdom in particular this is driven by the government’s objective of reducing the cost of construction projects. This is to be achieved by requiring all publicly funded projects to utilize fully collaborative building information modeling by 2016. A common goal in increasing building information model (BIM) adoption by the industry is the movement toward the realization of a BIM as either a single data model or a series of tightly coupled federated models. However, there are key obstacles to be overcome, including uncertainty over data ownership, concerns relating to the security/privacy of data, and reluctance to “outsource” data storage. This paper proposes a framework that is able to provide a solution for managing collaboration in the architecture engineering and construction (AEC) sector. The solution presented in this paper provides an overlay that automatically federates and governs distributed BIM data. The use of this overlay provides an integrated BIM model that is physically distributed across the stakeholders in a construction project. The key research question addressed by this paper is whether such an overlay can, by providing dynamic federation and governance of BIM data, overcome some key obstacles to BIM adoption, including questions over data ownership, the security/privacy of data, and reluctance to share data. More specifically, this paper provides the following contributions: (1) presentation of a vision for the implementation and governance of a federated distributed BIM data model; (2) description of the BIM process and governance model that underpins the approach; (3) provision of a validation case study using real construction data from a U.K. highways project, demonstrating that both the federated BIM overlay and the process and governance model are fit for purpose. - See more at: http://ascelibrary.org/doi/full/10.1061/(ASCE)CP.1943-5487.0000657#sthash.jIj574Lh.dpu
    corecore