636 research outputs found

    Learning and Reasoning for Robot Sequential Decision Making under Uncertainty

    Full text link
    Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous capabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.Comment: In proceedings of 34th AAAI conference on Artificial Intelligence, 202

    BWIBots: A platform for bridging the gap between AI and human–robot interaction research

    Get PDF
    Recent progress in both AI and robotics have enabled the development of general purpose robot platforms that are capable of executing a wide variety of complex, temporally extended service tasks in open environments. This article introduces a novel, custom-designed multi-robot platform for research on AI, robotics, and especially human–robot interaction for service robots. Called BWIBots, the robots were designed as a part of the Building-Wide Intelligence (BWI) project at the University of Texas at Austin. The article begins with a description of, and justification for, the hardware and software design decisions underlying the BWIBots, with the aim of informing the design of such platforms in the future. It then proceeds to present an overview of various research contributions that have enabled the BWIBots to better (a) execute action sequences to complete user requests, (b) efficiently ask questions to resolve user requests, (c) understand human commands given in natural language, and (d) understand human intention from afar. The article concludes with a look forward towards future research opportunities and applications enabled by the BWIBot platform

    A Survey of Knowledge-based Sequential Decision Making under Uncertainty

    Get PDF
    Reasoning with declarative knowledge (RDK) and sequential decision-making (SDM) are two key research areas in artificial intelligence. RDK methods reason with declarative domain knowledge, including commonsense knowledge, that is either provided a priori or acquired over time, while SDM methods (probabilistic planning and reinforcement learning) seek to compute action policies that maximize the expected cumulative utility over a time horizon; both classes of methods reason in the presence of uncertainty. Despite the rich literature in these two areas, researchers have not fully explored their complementary strengths. In this paper, we survey algorithms that leverage RDK methods while making sequential decisions under uncertainty. We discuss significant developments, open problems, and directions for future work

    Envisioning the qualitative effects of robot manipulation actions using simulation-based projections

    Get PDF
    Autonomous robots that are to perform complex everyday tasks such as making pancakes have to understand how the effects of an action depend on the way the action is executed. Within Artificial Intelligence, classical planning reasons about whether actions are executable, but makes the assumption that the actions will succeed (with some probability). In this work, we have designed, implemented, and analyzed a framework that allows us to envision the physical effects of robot manipulation actions. We consider envisioning to be a qualitative reasoning method that reasons about actions and their effects based on simulation-based projections. Thereby it allows a robot to infer what could happen when it performs a task in a certain way. This is achieved by translating a qualitative physics problem into a parameterized simulation problem; performing a detailed physics-based simulation of a robot plan; logging the state evolution into appropriate data structures; and then translating these sub-symbolic data structures into interval-based first-order symbolic, qualitative representations, called timelines. The result of the envisioning is a set of detailed narratives represented by timelines which are then used to infer answers to qualitative reasoning problems. By envisioning the outcome of actions before committing to them, a robot is able to reason about physical phenomena and can therefore prevent itself from ending up in unwanted situations. Using this approach, robots can perform manipulation tasks more efficiently, robustly, and flexibly, and they can even successfully accomplish previously unknown variations of tasks

    SGGNet2^2: Speech-Scene Graph Grounding Network for Speech-guided Navigation

    Full text link
    The spoken language serves as an accessible and efficient interface, enabling non-experts and disabled users to interact with complex assistant robots. However, accurately grounding language utterances gives a significant challenge due to the acoustic variability in speakers' voices and environmental noise. In this work, we propose a novel speech-scene graph grounding network (SGGNet2^2) that robustly grounds spoken utterances by leveraging the acoustic similarity between correctly recognized and misrecognized words obtained from automatic speech recognition (ASR) systems. To incorporate the acoustic similarity, we extend our previous grounding model, the scene-graph-based grounding network (SGGNet), with the ASR model from NVIDIA NeMo. We accomplish this by feeding the latent vector of speech pronunciations into the BERT-based grounding network within SGGNet. We evaluate the effectiveness of using latent vectors of speech commands in grounding through qualitative and quantitative studies. We also demonstrate the capability of SGGNet2^2 in a speech-based navigation task using a real quadruped robot, RBQ-3, from Rainbow Robotics.Comment: 7 pages, 6 figures, Paper accepted for the Special Session at the 2023 International Symposium on Robot and Human Interactive Communication (RO-MAN), [Dohyun Kim, Yeseung Kim, Jaehwi Jang, and Minjae Song] contributed equally to this wor
    • …
    corecore